Citation: | Li Yuan,Guo Yulong,Cheng Chunmei, et al. Remote estimation of total suspended matter concentration in the Hangzhou Bay based on OLCI and its water color product applicability analysis[J]. Haiyang Xuebao,2019, 41(9):156–169,doi:10.3969/j.issn. 0253−4193.2019.09.015 |
[1] |
Sun Deyong, Li Yunmei, Le Chengfeng, et al. A semi-analytical approach for detecting suspended particulate composition in complex turbid inland waters (China)[J]. Remote Sensing of Environment, 2013, 134: 92−99. doi: 10.1016/j.rse.2013.02.024
|
[2] |
Shi Kun, Zhang Yunlin, Zhu Guangwei, et al. Long-term remote monitoring of total suspended matter concentration in Lake Taihu using 250 m MODIS-Aqua data[J]. Remote Sensing of Environment, 2015, 164: 43−56. doi: 10.1016/j.rse.2015.02.029
|
[3] |
刘王兵, 于之锋, 周斌, 等. 杭州湾HJ CCD影像悬浮泥沙遥感定量反演[J]. 遥感学报, 2013, 17(4): 905−918.
Liu Wangbing, Yu Zhifeng, Zhou Bin, et al. Assessment of suspended sediment concentration at the Hangzhou Bay using HJ CCD imagery[J]. Journal of Remote Sensing, 2013, 17(4): 905−918.
|
[4] |
高永强, 高磊, 朱礼鑫, 等. 长江口及其邻近海域悬浮颗粒物浓度和粒径的时空变化特征[J]. 海洋学报, 2018, 40(3): 62−73. doi: 10.3969/j.issn.0253-4193.2018.03.006
Gao Yongqiang, Gao Lei, Zhu Lixin, et al. Spatiotemporal variations in concentration and size of suspended particulate matter in the Changjiang (Yangtze River) Estuary and its adjacent sea[J]. Haiyang Xuebao, 2018, 40(3): 62−73. doi: 10.3969/j.issn.0253-4193.2018.03.006
|
[5] |
Xie Dongfeng, Gao Shu, Wang Zhengbing, et al. Numerical modeling of tidal currents, sediment transport and morphological evolution in Hangzhou Bay, China[J]. International Journal of Sediment Research, 2013, 28(3): 316−328. doi: 10.1016/S1001-6279(13)60042-6
|
[6] |
Shen Fang, Verhoef W, Zhou Yunxuan, et al. Satellite estimates of wide-range suspended sediment concentrations in Changjiang (Yangtze) estuary using MERIS data[J]. Estuaries and Coasts, 2010, 33(6): 1420−1429. doi: 10.1007/s12237-010-9313-2
|
[7] |
He Xianqiang, Bai Yan, Pan Delu, et al. Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters[J]. Remote Sensing of Environment, 2013, 133: 225−239. doi: 10.1016/j.rse.2013.01.023
|
[8] |
毕顺, 李云梅, 吕恒, 等. 基于OLCI数据的洱海叶绿素a浓度估算[J]. 湖泊科学, 2018, 30(3): 701−712.
Bi Shun, Li Yunmei, Lv Heng, et al. Estimation of chlorophyll-a concentration in Lake Erhai based on OLCI data[J]. Journal of Lake Science, 2018, 30(3): 701−712.
|
[9] |
吴志明, 李建超, 王睿, 等. 基于随机森林的内陆湖泊水体有色可溶性有机物(CDOM)浓度遥感估算[J]. 湖泊科学, 2018, 30(4): 979−991.
Wu Zhiming, Li Jianchao, Wang Rui, et al. Estimation of CDOM concentration in inland lake based on random forest using Sentinel-3A OLCI[J]. Journal of Lake Science, 2018, 30(4): 979−991.
|
[10] |
崔廷伟, 张杰, 马毅, 等. 渤海悬浮物分布的遥感研究[J]. 海洋学报, 2009, 31(5): 10−18.
Cui Tingwei, Zhang Jie, Ma Yi, et al. The study on the distribution of suspended particulate matter in the Bohai Sea by remote sensing[J]. Haiyang Xuebao, 2009, 31(5): 10−18.
|
[11] |
余丹, 于之锋, 窦文洁, 等. 杭州湾冬季表层水体悬浮泥沙质量浓度的逐时变异[J]. 杭州师范大学学报: 自然科学版, 2014, 13(4): 373−379.
Yu Dan, Yu Zhifeng, Dou Wenjie, et al. Hourly variability of surface suspended sediment concentration in Hangzhou Bay in winter[J]. Journal of Hangzhou Normal University: Natural Science Edition, 2014, 13(4): 373−379.
|
[12] |
Li Yuan, Zhang Yunlin, Shi Kun, et al. Monitoring spatiotemporal variations in nutrients in a large drinking water reservoir and their relationships with hydrological and meteorological conditions based on Landsat 8 imagery[J]. Science of the Total Environment, 2017, 599−600: 1705−1717. doi: 10.1016/j.scitotenv.2017.05.075
|
[13] |
Mitchell B G. Algorithms for determining the absorption coefficient for aquatic particulates using the quantitative filter technique[J]. Proceedings of SPIE, 1990, 1302: 137−149. doi: 10.1117/12.21440
|
[14] |
唐军武, 田国良, 汪小勇, 等. 水体光谱测量与分析Ⅰ: 水面以上测量法[J]. 遥感学报, 2004, 8(1): 37−44.
Tang Junwu, Tian Guoliang, Wang Xiaoyong, et al. The methods of water spectra measurement and analysis I: above-water method[J]. Journal of Remote Sensing, 2004, 8(1): 37−44.
|
[15] |
Li Yuan, Zhang Yunlin, Shi Kun, et al. Spatiotemporal dynamics of chlorophyll-a in a large reservoir as derived from Landsat 8 OLI data: understanding its driving and restrictive factors[J]. Environmental Science and Pollution Research, 2018, 25(2): 1359−1374. doi: 10.1007/s11356-017-0536-7
|
[16] |
Zheng Zhubin, Li Yunmei, Guo Yulong, et al. Landsat-based long-term monitoring of total suspended matter concentration pattern change in the wet season for Dongting Lake, China[J]. Remote Sensing, 2015, 7(10): 13975−13999. doi: 10.3390/rs71013975
|
[17] |
Ruddick K G, Ovidio F, Rijkeboer M. Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters[J]. Applied Optics, 2000, 39(6): 897−912. doi: 10.1364/AO.39.000897
|
[18] |
He Xianqiang, Bai Yan, Pan Delu, et al. Atmospheric correction of satellite ocean color imagery using the ultraviolet wavelength for highly turbid waters[J]. Optics Express, 2012, 20(18): 20754−20770. doi: 10.1364/OE.20.020754
|
[19] |
Toming K, Kutser T, Uiboupin R, et al. Mapping water quality parameters with Sentinel-3 ocean and land colour instrument imagery in the Baltic Sea[J]. Remote Sensing, 2017, 9(10): 1070. doi: 10.3390/rs9101070
|
[20] |
Moore G F, Aiken J, Lavender S J. The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in Case II waters: Application to MERIS[J]. International Journal of Remote Sensing, 1999, 20(9): 1713−1733. doi: 10.1080/014311699212434
|
[21] |
Tassan S. An improved in-water algorithm for the determination of chlorophyll and suspended sediment concentration from Thematic Mapper data in coastal waters[J]. International Journal of Remote Sensing, 1993, 14(6): 1221−1229. doi: 10.1080/01431169308904406
|
[22] |
Zhang Minwei, Tang Junwu, Dong Qing, et al. Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery[J]. Remote Sensing of Environment, 2010, 114(2): 392−403. doi: 10.1016/j.rse.2009.09.016
|
[23] |
Mao Zhihua, Chen Jianyu, Pan Delu, et al. A regional remote sensing algorithm for total suspended matter in the East China Sea[J]. Remote Sensing of Environment, 2012, 124: 819−831. doi: 10.1016/j.rse.2012.06.014
|
[24] |
Liu Jia, Liu Jiahang, He Xianqiang, et al. Diurnal dynamics and seasonal variations of total suspended particulate matter in highly turbid Hangzhou Bay waters based on the geostationary ocean color imager[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(7): 2170−2180. doi: 10.1109/JSTARS.2018.2830335
|
[25] |
Chen Jun, D'Sa E, Cui Tingwei, et al. A semi-analytical total suspended sediment retrieval model in turbid coastal waters: a case study in Changjiang River Estuary[J]. Optics Express, 2013, 21(11): 13018−13031. doi: 10.1364/OE.21.013018
|
[26] |
Nechad B, Ruddick K G, Park Y. Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters[J]. Remote Sensing of Environment, 2010, 114(4): 854−866. doi: 10.1016/j.rse.2009.11.022
|
[27] |
马骅. 高浊度长江河口水色三要素的光学特征及其对TSM反演的影响[D]. 上海: 华东师范大学, 2015.
Ma Hua. The optical characteristics of the three elements in high turbidity water of the Yangtze River Estuary and its influence on the inversion of TSM[D]. Shanghai: East China Normal University, 2015.
|
[28] |
王珊珊, 王永波, 扶卿华, 等. 珠江口水体组分的吸收特性分析[J]. 环境科学, 2014, 35(12): 4511−4521.
Wang Shanshan, Wang Yongbo, Fu Qinghua, et al. Spectral absorption properties of the water constituents in the estuary of Zhujiang River[J]. Environmental Science, 2014, 35(12): 4511−4521.
|
[29] |
乐成峰, 李云梅, 查勇, 等. 太湖梅梁湾水体组分吸收特性季节差异分析[J]. 环境科学, 2008, 29(9): 2448−2455. doi: 10.3321/j.issn:0250-3301.2008.09.011
Le Chengfeng, Li Yunmei, Zha Yong, et al. Seasonal variation of in water constituents’ absorption properties in Meiliang Bay of Taihu Lake[J]. Environmental Science, 2008, 29(9): 2448−2455. doi: 10.3321/j.issn:0250-3301.2008.09.011
|
[30] |
Bai Yan, He Xianqiang, Pan Delu, et al. The extremely high concentration of suspended particulate matter in Changjiang Estuary detected by MERIS data[J]. Proceedings of SPIE, 2010, 7858: 78581D−78588D. doi: 10.1117/12.869632
|
[31] |
Bi Shun, Li Yunmei, Wang Qiao, et al. Inland water atmospheric correction based on turbidity classification using olci and slstr synergistic observations[J]. Remote Sensing, 2018, 10(7): 1002. doi: 10.3390/rs10071002
|
[32] |
Sun Deyong, Hu Chuanmin, Qiu Zhongfeng, et al. Reconstruction of hyperspectral reflectance for optically complex turbid inland lakes: test of a new scheme and implications for inversion algorithms[J]. Optics Express, 2015, 23(11): A718−A740. doi: 10.1364/OE.23.00A718
|
[33] |
Qiu Zhongfeng. A simple optical model to estimate suspended particulate matter in Yellow River Estuary[J]. Optics Express, 2013, 21(23): 27891−27904. doi: 10.1364/OE.21.027891
|
[34] |
刘猛, 沈芳, 葛建忠, 等. 静止轨道卫星观测杭州湾悬浮泥沙浓度的动态变化及动力分析[J]. 泥沙研究, 2013(1): 7−13. doi: 10.3969/j.issn.0468-155X.2013.01.002
Liu Meng, Shen Fang, Ge Jianzhong, et al. Diurnal variation of suspended sediment concentration in Hangzhou Bay from geostationary satellite observation and its hydrodynamic analysis[J]. Journal of Sediment Research, 2013(1): 7−13. doi: 10.3969/j.issn.0468-155X.2013.01.002
|