Citation: | Wei Hao,Zhao Wei,Luo Xiaofan, et al. Simulation of spatial distribution and seasonal variation of plankton in the Arctic Ocean[J]. Haiyang Xuebao,2019, 41(9):65–79,doi:10.3969/j.issn.0253−4193. 2019.09.006 |
[1] |
Woodgate R A. Increases in the Pacific inflow to the Arctic from 1990 to 2015, and insights into seasonal trends and driving mechanisms from year-round Bering Strait mooring data[J]. Progress in Oceanography, 2018, 160: 124−154. doi: 10.1016/j.pocean.2017.12.007
|
[2] |
Wood K R, Bond N A, Danielson S L, et al. A decade of environmental change in the Pacific Arctic region[J]. Progress in Oceanography, 2015, 136: 12−31. doi: 10.1016/j.pocean.2015.05.005
|
[3] |
Stroeve J C, Kattsov V, Barrett A, et al. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations[J]. Geophysical Research Letters, 2012, 39(16): L16502.
|
[4] |
曹勇, 赵进平. 2011-2014年中国北极物理海洋学的研究进展[J]. 海洋学报, 2015, 37(11): 1−10. doi: 10.3969/j.issn.0253-4193.2015.11.001
Cao Yong, Zhao Jinping. Progress in Arctic physical oceanography in China during 2011-2014[J]. Haiyang Xuebao, 2015, 37(11): 1−10. doi: 10.3969/j.issn.0253-4193.2015.11.001
|
[5] |
Anderson L G, Macdonald R W. Observing the Arctic Ocean carbon cycle in a changing environment[J]. Polar Research, 2015, 34(1): 26891. doi: 10.3402/polar.v34.26891
|
[6] |
陈立奇, 祁第, 高众勇, 等. 快速融冰背景下北冰洋夏季表层海水CO2分压的变异假设[J]. 科学通报, 2016, 61(21): 2419−2425.
Chen Liqi, Qi Di, Gao Zhongyong, et al. A hypothesis on variability of surface water pCO2 under the rapid sea-ice retreat during summer in the Arctic Ocean[J]. Chinese Science Bulletin, 2016, 61(21): 2419−2425.
|
[7] |
Zhang Jinlun, Ashjian C, Campbell R, et al. The influence of sea ice and snow cover and nutrient availability on the formation of massive under-ice phytoplankton blooms in the Chukchi Sea[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 118: 122−135. doi: 10.1016/j.dsr2.2015.02.008
|
[8] |
Pabi S, van Dijken G L, Arrigo K R. Primary production in the Arctic Ocean, 1998-2006[J]. Journal of Geophysical Research, 2008, 113(C8): C08005.
|
[9] |
高众勇, 陈立奇, Cai Weijun, et al. 全球变化中的北极碳汇: 现状与未来[J]. 地球科学进展, 2007, 22(8): 857−865. doi: 10.3321/j.issn:1001-8166.2007.08.012
Gao Zhongyong, Chen Liqi, Cai Weijun, et al. Arctic carbon sink in global change: present and future[J]. Advances in Earth Science, 2007, 22(8): 857−865. doi: 10.3321/j.issn:1001-8166.2007.08.012
|
[10] |
Zhuang Yanpei, Jin Haiyan, Gu Fan, et al. Composition of algal pigments in surface freshen layer after ice melt in the central Arctic[J]. Acta Oceanologica Sinica, 2017, 36(8): 122−130. doi: 10.1007/s13131-017-1024-0
|
[11] |
Arrigo K R, van Dijken G L. Continued increases in Arctic Ocean primary production[J]. Progress in Oceanography, 2015, 136: 60−70. doi: 10.1016/j.pocean.2015.05.002
|
[12] |
Brown Z W, Arrigo K R. Contrasting trends in sea ice and primary production in the Bering Sea and Arctic Ocean[J]. ICES Journal of Marine Science, 2012, 69(7): 1180−1193. doi: 10.1093/icesjms/fss113
|
[13] |
李宏亮, 陈建芳, 高生泉, 等. 西北冰洋中太平洋入流水营养盐的变化特征[J]. 海洋学报, 2011, 33(2): 85−95.
Li Hongliang, Chen Jianfang, Gao Shengquan, et al. Nutrients variation of the Pacific inflow in the western Arctic Ocean[J]. Haiyang Xuebao, 2011, 33(2): 85−95.
|
[14] |
Popova E E, Yool A, Coward A C, et al. Control of primary production in the Arctic by nutrients and light: insights from a high resolution ocean general circulation model[J]. Biogeosciences, 2010, 7(11): 3569−3591. doi: 10.5194/bg-7-3569-2010
|
[15] |
高生泉, 陈建芳, 李宏亮, 等. 2008年夏季白令海营养盐的分布及其结构状况[J]. 海洋学报, 2011, 33(2): 157−165.
Gao Shengquan, Chen Jianfang, Li Hongliang, et al. The distribution and structural conditions of nutrients in the Bering Sea in the summer of 2008[J]. Haiyang Xuebao, 2011, 33(2): 157−165.
|
[16] |
Stabeno P J, Danielson S L, Kachel D G, et al. Currents and transport on the eastern Bering Sea shelf: An integration of over 20 years of data[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2016, 134: 13−29. doi: 10.1016/j.dsr2.2016.05.010
|
[17] |
Arrigo K R, Perovich D K, Pickart R S, et al. Phytoplankton blooms beneath the sea ice in the Chukchi Sea[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2014, 105: 1−16. doi: 10.1016/j.dsr2.2014.03.018
|
[18] |
Arrigo K R, Perovich D K, Pickart R S, et al. Massive phytoplankton blooms under Arctic sea ice[J]. Science, 2012, 336(6087): 1408. doi: 10.1126/science.1215065
|
[19] |
McLaughlin F A, Carmack E C. Deepening of the nutricline and chlorophyll maximum in the Canada Basin interior, 2003–2009[J]. Geophysical Research Letters, 2010, 37(24): L24602.
|
[20] |
Slagstad D, Støle-Hansen K. Dynamics of plankton growth in the Barents Sea: model studies[J]. Polar Research, 1991, 10(1): 173−186. doi: 10.1111/j.1751-8369.1991.tb00643.x
|
[21] |
Wassmann P, Slagstad D, Ellingsen I. Primary production and climatic variability in the European sector of the Arctic Ocean prior to 2007: preliminary results[J]. Polar Biology, 2010, 33(12): 1641−1650. doi: 10.1007/s00300-010-0839-3
|
[22] |
Ellingsen I H, Dalpadado P, Slagstad D, et al. Impact of climatic change on the biological production in the Barents Sea[J]. Climatic Change, 2008, 87(1/2): 155−175.
|
[23] |
Slagstad D, McClimans T A. Modeling the ecosystem dynamics of the Barents Sea including the marginal ice zone: Ⅰ. physical and chemical oceanography[J]. Journal of Marine Systems, 2005, 58(1/2): 1−18.
|
[24] |
Wassmann P, Slagstad D, Riser C W, et al. Modelling the ecosystem dynamics of the Barents Sea including the marginal ice zone: Ⅱ. carbon flux and interannual variability[J]. Journal of Marine Systems, 2006, 59(1/2): 1−24.
|
[25] |
Shuert P G, Walsh J J. A coupled physical-biological model of the Bering-Chukchi seas[J]. Continental Shelf Research, 1993, 13(5/6): 543−573.
|
[26] |
Walsh J J, Dieterle D A, Maslowski W, et al. A numerical model of seasonal primary production within the Chukchi/Beaufort Seas[J]. Deep-Sea Research Part Ⅱ: Topical Studies in Oceanography, 2005, 52(24/26): 3541−3576.
|
[27] |
Walsh J J, Dieterle D A, Maslowski W, et al. Decadal shifts in biophysical forcing of Arctic marine food webs: numerical consequences[J]. Journal of Geophysical Research, 2004, 109(C5): C05031.
|
[28] |
Mortenson E, Hayashida H, Steiner N, et al. A model-based analysis of physical and biological controls on ice algal and pelagic primary production in resolute passage[J]. Elementa: Science of the Anthropocene, 2017, 5: 39.
|
[29] |
Lavoie D, Macdonald R W, Denman K L. Primary productivity and export fluxes on the Canadian shelf of the Beaufort Sea: a modelling study[J]. Journal of Marine Systems, 2009, 75(1/2): 17−32.
|
[30] |
Lavoie D, Denman K, Michel C. Modeling ice algal growth and decline in a seasonally ice-covered region of the Arctic (Resolute Passage, Canadian Archipelago)[J]. Journal of Geophysical Research, 2005, 110(C11): C11009. doi: 10.1029/2005JC002922
|
[31] |
Samuelsen A, Hansen C, Wehde H. Tuning and assessment of the HYCOM-NORWECOM V2[J]. Geoscientific Model Development, 2015, 8(7): 2187−2202. doi: 10.5194/gmd-8-2187-2015
|
[32] |
Yool A, Popova E E, Anderson T R. MEDUSA-2.0: an intermediate complexity biogeochemical model of the marine carbon cycle for climate change and ocean acidification studies[J]. Geoscientific Model Development, 2013, 6(5): 1767−1811. doi: 10.5194/gmd-6-1767-2013
|
[33] |
Yool A, Popova E E, Anderson T R. Medusa-1.0: a new intermediate complexity plankton ecosystem model for the global domain[J]. Geoscientific Model Development, 2011, 4(2): 381−417. doi: 10.5194/gmd-4-381-2011
|
[34] |
Zhang Jinlun, Ashjian C, Campbell R, et al. The great 2012 Arctic Ocean summer cyclone enhanced biological productivity on the shelves[J]. Journal of Geophysical Research, 2014, 119(1): 297−312.
|
[35] |
Zhang Jinlun, Spitz Y H, Steele M, et al. Modeling the impact of declining sea ice on the Arctic marine planktonic ecosystem[J]. Journal of Geophysical Research, 2010, 115(C10): C10015. doi: 10.1029/2009JC005387
|
[36] |
Jin Meibing, Deal C, Lee S H, et al. Investigation of Arctic sea ice and ocean primary production for the period 1992-2007 using a 3-D global ice-ocean ecosystem model[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2012, 81-84: 28−35. doi: 10.1016/j.dsr2.2011.06.003
|
[37] |
Jin Meibing, Deal C, Wang Jia. A coupled ice-ocean ecosystem model for 1-D and 3-D applications in the Bering and Chukchi Seas[J]. Chinese Journal of Polar Science, 2008, 19(2): 218−229.
|
[38] |
Hu Haoguo, Wang Jia, Liu Hui, et al. Simulation of phytoplankton distribution and variation in the Bering-Chukchi Sea using a 3-D physical-biological model[J]. Journal of Geophysical Research, 2016, 121(6): 4041−4055.
|
[39] |
Wang Jia, Hu Haoguo, Goes J, et al. A modeling study of seasonal variations of sea ice and plankton in the Bering and Chukchi Seas during 2007–2008[J]. Journal of Geophysical Research, 2013, 118(3): 1520−1533.
|
[40] |
Aumont O, Ethé C, Tagliabue A, et al. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies[J]. Geoscientific Model Development, 2015, 8(8): 2465−2513. doi: 10.5194/gmd-8-2465-2015
|
[41] |
Popova E E, Yool A, Coward A C, et al. What controls primary production in the Arctic Ocean? Results from an intercomparison of five general circulation models with biogeochemistry[J]. Journal of Geophysical Research, 2012, 117(C8): C00D12.
|
[42] |
Jin Meibing, Popova E E, Zhang Jinlun, et al. Ecosystem model intercomparison of under-ice and total primary production in the Arctic Ocean[J]. Journal of Geophysical Research, 2016, 121(1): 934−948.
|
[43] |
Steiner N S, Sou T, Deal C, et al. The future of the subsurface chlorophyll-a maximum in the Canada Basin—A model intercomparison[J]. Journal of Geophysical Research, 2016, 121(1): 387−409.
|
[44] |
Yool A, Popova E E, Coward A C. Future change in ocean productivity: is the Arctic the new Atlantic?[J]. Journal of Geophysical Research, 2015, 120(12): 7771−7790.
|
[45] |
Wang S, Bailey D, Lindsay K, et al. Impact of sea ice on the marine iron cycle and phytoplankton productivity[J]. Biogeosciences, 2014, 11(17): 4713−4731. doi: 10.5194/bg-11-4713-2014
|
[46] |
Moore J K, Doney S C, Glover D M, et al. Iron cycling and nutrient-limitation patterns in surface waters of the world ocean[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 49(1/3): 463−507.
|
[47] |
Olsen A, Key R M, van Heuven S, et al. The global ocean data analysis project version 2(GLODAPv2)—an internally consistent data product for the world ocean[J]. Earth System Science Data, 2016, 8(2): 297−323. doi: 10.5194/essd-8-297-2016
|
[48] |
Garric G, Parent L. Product user manual for global ocean reanalysis products GLOBAL-REANALYSIS-PHY-001-025[EB/OL].(2017–01–01)/[2018–07–05]. http://cmems-resources.cls.fr/documents/PUM/CMEMS-GLO-PUM-001-025-011-017.pdf
|
[49] |
Dussin R, Barnier B, Brodeau L. Up-dated description of the DFS5 forcing data set: the making of Drakkar forcing set DFS5[R]. DRAKKAR/MyOcean Report 01–04–16, Grenoble, France: LGGE, 2016.
|
[50] |
Flather R A. A tidal model of the northeast pacific[J]. Atmosphere-Ocean, 1987, 25(1): 22−45. doi: 10.1080/07055900.1987.9649262
|
[51] |
罗晓凡, 胡宪敏, 聂红涛, 等. 北冰洋与邻近海区海洋–海冰模式的试算与校验[J]. 海洋学报, 2019, 41(9): 1−12.
Luo Xiaofan, Hu Xianmin, Nie Hongtao, et al. Evaluation of hindcast simulation with the ocean and sea-ice model covering the Arctic and adjacent oceans[J]. Haiyang Xuebao, 2019, 41(9): 1−12.
|
[52] |
Levitus S, Antonov J I, Baranova O K, et al. The world ocean database[J]. Data Science Journal, 2013, 12: WDS229−WDS234.
|
[53] |
Cota G, Pomeroy L. Arctic nutrient database 1904–2000[EB/OL].(2007–11–05)/[2018–07–05]. Boulder, Colorado: UCAR/NCAR-earth observing laboratory. https://doi.org/10.5065/D6RF5S30
|
[54] |
Perrette M, Yool A, Quartly G D, et al. Near-ubiquity of ice-edge blooms in the Arctic[J]. Biogeosciences, 2011, 8(2): 515−524. doi: 10.5194/bg-8-515-2011
|
[55] |
Martin J, Tremblay J É, Gagnon J, et al. Prevalence, structure and properties of subsurface chlorophyll maxima in Canadian Arctic waters[J]. Marine Ecology Progress Series, 2010, 412: 69−84. doi: 10.3354/meps08666
|
[56] |
Cullen J J. The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1982, 39(5): 791−803. doi: 10.1139/f82-108
|
[57] |
Arrigo K R, Mills M M, van Dijken G L, et al. Late spring nitrate distributions beneath the ice-covered northeastern Chukchi shelf[J]. Journal of Geophysical Research, 2017, 122(9): 2409−2417.
|
[58] |
张海生. 北极海冰快速变化及气候与生态效应[M]. 北京: 海洋出版社, 2015.
Zhang Haisheng. Rapid Changes in Arctic Sea Ice and Climatic, Ecological Effects[M]. Beijing: China Ocean Press, 2015.
|
[59] |
Hill V, Ardyna M, Lee S H, et al. Decadal trends in phytoplankton production in the Pacific Arctic region from 1950 to 2012[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2018, 152: 82−94. doi: 10.1016/j.dsr2.2016.12.015
|
[60] |
Hill V, Cota G. Spatial patterns of primary production on the shelf, slope and basin of the western Arctic in 2002[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2005, 52(24/26): 3344−3354.
|
[61] |
Zhuang Yanpei, Jin Haiyan, Li Hongliang, et al. Pacific inflow control on phytoplankton community in the eastern Chukchi Shelf during summer[J]. Continental Shelf Research, 2016, 129: 23−32. doi: 10.1016/j.csr.2016.09.010
|
[62] |
Brown Z W, Lowry K E, Palmer M A, et al. Characterizing the subsurface chlorophyll a maximum in the Chukchi Sea and Canada Basin[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 118: 88−104. doi: 10.1016/j.dsr2.2015.02.010
|
[63] |
Brzezinski M A. The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables[J]. Journal of Phycology, 1985, 21(3): 347−357.
|
[64] |
Li W K W, McLaughlin F A, Lovejoy C, et al. Smallest algae thrive as the Arctic Ocean freshens[J]. Science, 2009, 326(5952): 539. doi: 10.1126/science.1179798
|