Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Wei Hao,Zhao Wei,Luo Xiaofan, et al. Simulation of spatial distribution and seasonal variation of plankton in the Arctic Ocean[J]. Haiyang Xuebao,2019, 41(9):65–79,doi:10.3969/j.issn.0253−4193.2019.09.006
Citation: Wei Hao,Zhao Wei,Luo Xiaofan, et al. Simulation of spatial distribution and seasonal variation of plankton in the Arctic Ocean[J]. Haiyang Xuebao,2019, 41(9):65–79,doi:10.3969/j.issn.0253−4193. 2019.09.006

Simulation of spatial distribution and seasonal variation of plankton in the Arctic Ocean

doi: 10.3969/j.issn.0253-4193.2019.09.006
  • Received Date: 2018-07-11
  • Rev Recd Date: 2018-10-24
  • Available Online: 2021-04-21
  • Publish Date: 2019-09-25
  • Eco-dynamics of marine plankton are remarkably sensitive to changes in their environments. The Arctic Ocean is undergoing rapid environmental changes as the global climate change intensifies. Understanding the seasonal distribution and variation of low-trophic plankton is a prerequisite for exploring the response of ecosystem to changing environment in the Arctic Ocean, and is also an important basis for assessing the carbon sequestration capacity of the Arctic Ocean. Based on above, a coupled ocean-sea ice-biogeochemical cycling model was developed and applied to evaluate the temporal-spatial variations of chlorophyll a concentration and planktonic structures in the Arctic Ocean. The results suggested that: (1) surface chlorophyll a concentration mainly peaks in May, with the higher values on the Pacific side than the Atlantic; since stratification occurs, subsurface chlorophyll a maximums are found in areas having limited nutrients at surface, and the depth of subsurface chlorophyll a maximums gradually deepens from the shelf towards the basin; in September, the high chlorophyll a concentration returns to the upper layer from the subsurface, presenting a sub-peak of surface chlorophyll a concentration on the Pacific side. (2) Substantial regional differences in surface plankton communities exist in the Arctic Ocean due to the influences of the Pacific and Atlantic inflows with variations in nutrients concentrations and structures. Diatom and mesozooplankton are dominant species on the Pacific side where diatom biomass exhibits two peaks in May and September, meanwhile nanophytoplankton maintains relatively high biomass in March, May and June. Atlantic side experiences a seasonal succession from nanophytoplankton to diatom then to nanophytoplankton corresponding to early spring, late spring-early summer, and summer-autumn, respectively. Over the entire growth season, nanophytoplankton and microzooplankton dominate on the Atlantic side. Generally, the peak biomass of zooplankton has a lag for half a month to the peak of phytoplankton biomass in the Arctic Ocean.
  • loading
  • [1]
    Woodgate R A. Increases in the Pacific inflow to the Arctic from 1990 to 2015, and insights into seasonal trends and driving mechanisms from year-round Bering Strait mooring data[J]. Progress in Oceanography, 2018, 160: 124−154. doi: 10.1016/j.pocean.2017.12.007
    [2]
    Wood K R, Bond N A, Danielson S L, et al. A decade of environmental change in the Pacific Arctic region[J]. Progress in Oceanography, 2015, 136: 12−31. doi: 10.1016/j.pocean.2015.05.005
    [3]
    Stroeve J C, Kattsov V, Barrett A, et al. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations[J]. Geophysical Research Letters, 2012, 39(16): L16502.
    [4]
    曹勇, 赵进平. 2011-2014年中国北极物理海洋学的研究进展[J]. 海洋学报, 2015, 37(11): 1−10. doi: 10.3969/j.issn.0253-4193.2015.11.001

    Cao Yong, Zhao Jinping. Progress in Arctic physical oceanography in China during 2011-2014[J]. Haiyang Xuebao, 2015, 37(11): 1−10. doi: 10.3969/j.issn.0253-4193.2015.11.001
    [5]
    Anderson L G, Macdonald R W. Observing the Arctic Ocean carbon cycle in a changing environment[J]. Polar Research, 2015, 34(1): 26891. doi: 10.3402/polar.v34.26891
    [6]
    陈立奇, 祁第, 高众勇, 等. 快速融冰背景下北冰洋夏季表层海水CO2分压的变异假设[J]. 科学通报, 2016, 61(21): 2419−2425.

    Chen Liqi, Qi Di, Gao Zhongyong, et al. A hypothesis on variability of surface water pCO2 under the rapid sea-ice retreat during summer in the Arctic Ocean[J]. Chinese Science Bulletin, 2016, 61(21): 2419−2425.
    [7]
    Zhang Jinlun, Ashjian C, Campbell R, et al. The influence of sea ice and snow cover and nutrient availability on the formation of massive under-ice phytoplankton blooms in the Chukchi Sea[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 118: 122−135. doi: 10.1016/j.dsr2.2015.02.008
    [8]
    Pabi S, van Dijken G L, Arrigo K R. Primary production in the Arctic Ocean, 1998-2006[J]. Journal of Geophysical Research, 2008, 113(C8): C08005.
    [9]
    高众勇, 陈立奇, Cai Weijun, et al. 全球变化中的北极碳汇: 现状与未来[J]. 地球科学进展, 2007, 22(8): 857−865. doi: 10.3321/j.issn:1001-8166.2007.08.012

    Gao Zhongyong, Chen Liqi, Cai Weijun, et al. Arctic carbon sink in global change: present and future[J]. Advances in Earth Science, 2007, 22(8): 857−865. doi: 10.3321/j.issn:1001-8166.2007.08.012
    [10]
    Zhuang Yanpei, Jin Haiyan, Gu Fan, et al. Composition of algal pigments in surface freshen layer after ice melt in the central Arctic[J]. Acta Oceanologica Sinica, 2017, 36(8): 122−130. doi: 10.1007/s13131-017-1024-0
    [11]
    Arrigo K R, van Dijken G L. Continued increases in Arctic Ocean primary production[J]. Progress in Oceanography, 2015, 136: 60−70. doi: 10.1016/j.pocean.2015.05.002
    [12]
    Brown Z W, Arrigo K R. Contrasting trends in sea ice and primary production in the Bering Sea and Arctic Ocean[J]. ICES Journal of Marine Science, 2012, 69(7): 1180−1193. doi: 10.1093/icesjms/fss113
    [13]
    李宏亮, 陈建芳, 高生泉, 等. 西北冰洋中太平洋入流水营养盐的变化特征[J]. 海洋学报, 2011, 33(2): 85−95.

    Li Hongliang, Chen Jianfang, Gao Shengquan, et al. Nutrients variation of the Pacific inflow in the western Arctic Ocean[J]. Haiyang Xuebao, 2011, 33(2): 85−95.
    [14]
    Popova E E, Yool A, Coward A C, et al. Control of primary production in the Arctic by nutrients and light: insights from a high resolution ocean general circulation model[J]. Biogeosciences, 2010, 7(11): 3569−3591. doi: 10.5194/bg-7-3569-2010
    [15]
    高生泉, 陈建芳, 李宏亮, 等. 2008年夏季白令海营养盐的分布及其结构状况[J]. 海洋学报, 2011, 33(2): 157−165.

    Gao Shengquan, Chen Jianfang, Li Hongliang, et al. The distribution and structural conditions of nutrients in the Bering Sea in the summer of 2008[J]. Haiyang Xuebao, 2011, 33(2): 157−165.
    [16]
    Stabeno P J, Danielson S L, Kachel D G, et al. Currents and transport on the eastern Bering Sea shelf: An integration of over 20 years of data[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2016, 134: 13−29. doi: 10.1016/j.dsr2.2016.05.010
    [17]
    Arrigo K R, Perovich D K, Pickart R S, et al. Phytoplankton blooms beneath the sea ice in the Chukchi Sea[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2014, 105: 1−16. doi: 10.1016/j.dsr2.2014.03.018
    [18]
    Arrigo K R, Perovich D K, Pickart R S, et al. Massive phytoplankton blooms under Arctic sea ice[J]. Science, 2012, 336(6087): 1408. doi: 10.1126/science.1215065
    [19]
    McLaughlin F A, Carmack E C. Deepening of the nutricline and chlorophyll maximum in the Canada Basin interior, 2003–2009[J]. Geophysical Research Letters, 2010, 37(24): L24602.
    [20]
    Slagstad D, Støle-Hansen K. Dynamics of plankton growth in the Barents Sea: model studies[J]. Polar Research, 1991, 10(1): 173−186. doi: 10.1111/j.1751-8369.1991.tb00643.x
    [21]
    Wassmann P, Slagstad D, Ellingsen I. Primary production and climatic variability in the European sector of the Arctic Ocean prior to 2007: preliminary results[J]. Polar Biology, 2010, 33(12): 1641−1650. doi: 10.1007/s00300-010-0839-3
    [22]
    Ellingsen I H, Dalpadado P, Slagstad D, et al. Impact of climatic change on the biological production in the Barents Sea[J]. Climatic Change, 2008, 87(1/2): 155−175.
    [23]
    Slagstad D, McClimans T A. Modeling the ecosystem dynamics of the Barents Sea including the marginal ice zone: Ⅰ. physical and chemical oceanography[J]. Journal of Marine Systems, 2005, 58(1/2): 1−18.
    [24]
    Wassmann P, Slagstad D, Riser C W, et al. Modelling the ecosystem dynamics of the Barents Sea including the marginal ice zone: Ⅱ. carbon flux and interannual variability[J]. Journal of Marine Systems, 2006, 59(1/2): 1−24.
    [25]
    Shuert P G, Walsh J J. A coupled physical-biological model of the Bering-Chukchi seas[J]. Continental Shelf Research, 1993, 13(5/6): 543−573.
    [26]
    Walsh J J, Dieterle D A, Maslowski W, et al. A numerical model of seasonal primary production within the Chukchi/Beaufort Seas[J]. Deep-Sea Research Part Ⅱ: Topical Studies in Oceanography, 2005, 52(24/26): 3541−3576.
    [27]
    Walsh J J, Dieterle D A, Maslowski W, et al. Decadal shifts in biophysical forcing of Arctic marine food webs: numerical consequences[J]. Journal of Geophysical Research, 2004, 109(C5): C05031.
    [28]
    Mortenson E, Hayashida H, Steiner N, et al. A model-based analysis of physical and biological controls on ice algal and pelagic primary production in resolute passage[J]. Elementa: Science of the Anthropocene, 2017, 5: 39.
    [29]
    Lavoie D, Macdonald R W, Denman K L. Primary productivity and export fluxes on the Canadian shelf of the Beaufort Sea: a modelling study[J]. Journal of Marine Systems, 2009, 75(1/2): 17−32.
    [30]
    Lavoie D, Denman K, Michel C. Modeling ice algal growth and decline in a seasonally ice-covered region of the Arctic (Resolute Passage, Canadian Archipelago)[J]. Journal of Geophysical Research, 2005, 110(C11): C11009. doi: 10.1029/2005JC002922
    [31]
    Samuelsen A, Hansen C, Wehde H. Tuning and assessment of the HYCOM-NORWECOM V2[J]. Geoscientific Model Development, 2015, 8(7): 2187−2202. doi: 10.5194/gmd-8-2187-2015
    [32]
    Yool A, Popova E E, Anderson T R. MEDUSA-2.0: an intermediate complexity biogeochemical model of the marine carbon cycle for climate change and ocean acidification studies[J]. Geoscientific Model Development, 2013, 6(5): 1767−1811. doi: 10.5194/gmd-6-1767-2013
    [33]
    Yool A, Popova E E, Anderson T R. Medusa-1.0: a new intermediate complexity plankton ecosystem model for the global domain[J]. Geoscientific Model Development, 2011, 4(2): 381−417. doi: 10.5194/gmd-4-381-2011
    [34]
    Zhang Jinlun, Ashjian C, Campbell R, et al. The great 2012 Arctic Ocean summer cyclone enhanced biological productivity on the shelves[J]. Journal of Geophysical Research, 2014, 119(1): 297−312.
    [35]
    Zhang Jinlun, Spitz Y H, Steele M, et al. Modeling the impact of declining sea ice on the Arctic marine planktonic ecosystem[J]. Journal of Geophysical Research, 2010, 115(C10): C10015. doi: 10.1029/2009JC005387
    [36]
    Jin Meibing, Deal C, Lee S H, et al. Investigation of Arctic sea ice and ocean primary production for the period 1992-2007 using a 3-D global ice-ocean ecosystem model[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2012, 81-84: 28−35. doi: 10.1016/j.dsr2.2011.06.003
    [37]
    Jin Meibing, Deal C, Wang Jia. A coupled ice-ocean ecosystem model for 1-D and 3-D applications in the Bering and Chukchi Seas[J]. Chinese Journal of Polar Science, 2008, 19(2): 218−229.
    [38]
    Hu Haoguo, Wang Jia, Liu Hui, et al. Simulation of phytoplankton distribution and variation in the Bering-Chukchi Sea using a 3-D physical-biological model[J]. Journal of Geophysical Research, 2016, 121(6): 4041−4055.
    [39]
    Wang Jia, Hu Haoguo, Goes J, et al. A modeling study of seasonal variations of sea ice and plankton in the Bering and Chukchi Seas during 2007–2008[J]. Journal of Geophysical Research, 2013, 118(3): 1520−1533.
    [40]
    Aumont O, Ethé C, Tagliabue A, et al. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies[J]. Geoscientific Model Development, 2015, 8(8): 2465−2513. doi: 10.5194/gmd-8-2465-2015
    [41]
    Popova E E, Yool A, Coward A C, et al. What controls primary production in the Arctic Ocean? Results from an intercomparison of five general circulation models with biogeochemistry[J]. Journal of Geophysical Research, 2012, 117(C8): C00D12.
    [42]
    Jin Meibing, Popova E E, Zhang Jinlun, et al. Ecosystem model intercomparison of under-ice and total primary production in the Arctic Ocean[J]. Journal of Geophysical Research, 2016, 121(1): 934−948.
    [43]
    Steiner N S, Sou T, Deal C, et al. The future of the subsurface chlorophyll-a maximum in the Canada Basin—A model intercomparison[J]. Journal of Geophysical Research, 2016, 121(1): 387−409.
    [44]
    Yool A, Popova E E, Coward A C. Future change in ocean productivity: is the Arctic the new Atlantic?[J]. Journal of Geophysical Research, 2015, 120(12): 7771−7790.
    [45]
    Wang S, Bailey D, Lindsay K, et al. Impact of sea ice on the marine iron cycle and phytoplankton productivity[J]. Biogeosciences, 2014, 11(17): 4713−4731. doi: 10.5194/bg-11-4713-2014
    [46]
    Moore J K, Doney S C, Glover D M, et al. Iron cycling and nutrient-limitation patterns in surface waters of the world ocean[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 49(1/3): 463−507.
    [47]
    Olsen A, Key R M, van Heuven S, et al. The global ocean data analysis project version 2(GLODAPv2)—an internally consistent data product for the world ocean[J]. Earth System Science Data, 2016, 8(2): 297−323. doi: 10.5194/essd-8-297-2016
    [48]
    Garric G, Parent L. Product user manual for global ocean reanalysis products GLOBAL-REANALYSIS-PHY-001-025[EB/OL].(2017–01–01)/[2018–07–05]. http://cmems-resources.cls.fr/documents/PUM/CMEMS-GLO-PUM-001-025-011-017.pdf
    [49]
    Dussin R, Barnier B, Brodeau L. Up-dated description of the DFS5 forcing data set: the making of Drakkar forcing set DFS5[R]. DRAKKAR/MyOcean Report 01–04–16, Grenoble, France: LGGE, 2016.
    [50]
    Flather R A. A tidal model of the northeast pacific[J]. Atmosphere-Ocean, 1987, 25(1): 22−45. doi: 10.1080/07055900.1987.9649262
    [51]
    罗晓凡, 胡宪敏, 聂红涛, 等. 北冰洋与邻近海区海洋–海冰模式的试算与校验[J]. 海洋学报, 2019, 41(9): 1−12.

    Luo Xiaofan, Hu Xianmin, Nie Hongtao, et al. Evaluation of hindcast simulation with the ocean and sea-ice model covering the Arctic and adjacent oceans[J]. Haiyang Xuebao, 2019, 41(9): 1−12.
    [52]
    Levitus S, Antonov J I, Baranova O K, et al. The world ocean database[J]. Data Science Journal, 2013, 12: WDS229−WDS234.
    [53]
    Cota G, Pomeroy L. Arctic nutrient database 1904–2000[EB/OL].(2007–11–05)/[2018–07–05]. Boulder, Colorado: UCAR/NCAR-earth observing laboratory. https://doi.org/10.5065/D6RF5S30
    [54]
    Perrette M, Yool A, Quartly G D, et al. Near-ubiquity of ice-edge blooms in the Arctic[J]. Biogeosciences, 2011, 8(2): 515−524. doi: 10.5194/bg-8-515-2011
    [55]
    Martin J, Tremblay J É, Gagnon J, et al. Prevalence, structure and properties of subsurface chlorophyll maxima in Canadian Arctic waters[J]. Marine Ecology Progress Series, 2010, 412: 69−84. doi: 10.3354/meps08666
    [56]
    Cullen J J. The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1982, 39(5): 791−803. doi: 10.1139/f82-108
    [57]
    Arrigo K R, Mills M M, van Dijken G L, et al. Late spring nitrate distributions beneath the ice-covered northeastern Chukchi shelf[J]. Journal of Geophysical Research, 2017, 122(9): 2409−2417.
    [58]
    张海生. 北极海冰快速变化及气候与生态效应[M]. 北京: 海洋出版社, 2015.

    Zhang Haisheng. Rapid Changes in Arctic Sea Ice and Climatic, Ecological Effects[M]. Beijing: China Ocean Press, 2015.
    [59]
    Hill V, Ardyna M, Lee S H, et al. Decadal trends in phytoplankton production in the Pacific Arctic region from 1950 to 2012[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2018, 152: 82−94. doi: 10.1016/j.dsr2.2016.12.015
    [60]
    Hill V, Cota G. Spatial patterns of primary production on the shelf, slope and basin of the western Arctic in 2002[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2005, 52(24/26): 3344−3354.
    [61]
    Zhuang Yanpei, Jin Haiyan, Li Hongliang, et al. Pacific inflow control on phytoplankton community in the eastern Chukchi Shelf during summer[J]. Continental Shelf Research, 2016, 129: 23−32. doi: 10.1016/j.csr.2016.09.010
    [62]
    Brown Z W, Lowry K E, Palmer M A, et al. Characterizing the subsurface chlorophyll a maximum in the Chukchi Sea and Canada Basin[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 118: 88−104. doi: 10.1016/j.dsr2.2015.02.010
    [63]
    Brzezinski M A. The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables[J]. Journal of Phycology, 1985, 21(3): 347−357.
    [64]
    Li W K W, McLaughlin F A, Lovejoy C, et al. Smallest algae thrive as the Arctic Ocean freshens[J]. Science, 2009, 326(5952): 539. doi: 10.1126/science.1179798
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article views (634) PDF downloads(187) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return