Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Luo Chenyi,Nie Hongtao,Zhang Haiyan. Spatial variability of parameter sensitivity in the ecosystem simulation of the Bohai Sea and Yellow Sea[J]. Haiyang Xuebao,2019, 41(8):85–96,doi:10.3969/j.issn.0253−4193.2019.08.008
Citation: Luo Chenyi,Nie Hongtao,Zhang Haiyan. Spatial variability of parameter sensitivity in the ecosystem simulation of the Bohai Sea and Yellow Sea[J]. Haiyang Xuebao,2019, 41(8):85–96,doi:10.3969/j.issn.0253−4193. 2019.08.008

Spatial variability of parameter sensitivity in the ecosystem simulation of the Bohai Sea and Yellow Sea

doi: 10.3969/j.issn.0253-4193.2019.08.008
  • Received Date: 2018-08-14
  • Rev Recd Date: 2018-11-23
  • Available Online: 2021-04-21
  • Publish Date: 2019-08-25
  • As the development of marine ecosystem models, the number of biological parameters increases, which consequently causes determination of these parameters to become a bottleneck in ecosystem modeling. Intrinsic regional characteristics of the ecosystem require spatial variability of biological parameters. To explore spatial difference of key parameters and their sensitivity, a highly resolved physical-biological ecosystem model ROMS-CoSiNE of the Bohai Sea and Yellow Sea is established. Sensitivity analysis of thirteen biological parameters indicates that strong difference in sensitivity exist between the south center Yellow Sea, the Bohai Sea and it’s coastal areas as well. The most sensitive parameter in the Bohai Sea is the initial slope of P-I curve. The second and third are the half saturation constant for zooplankton grazing and the maximum specific growth rate of zooplankton. For the south Yellow Sea, the most sensitive parameters are the maximum specific growth rate of zooplankton, the death rate of phytoplankton and the initial slope of P-I curve. Based on sensitivity distribution and phytoplankton budget, it is concluded that the low transparency in the Bohai Sea and high transparency in the Yellow Sea are mainly responsible for spatial difference of sensitivity relative to the initial slope of P-I curve. Spatial difference of sensitivity relative to the maximum specific growth rate of zooplankton and the death rate of phytoplankton, is affected by phytoplankton amount difference between the Bohai Sea and the Yellow Sea, and related to high nonlinearity in the ecosystem.
  • [1]
    Denman K L. Modelling planktonic ecosystems: parameterizing complexity[J]. Progress in Oceanography, 2003, 57(3/4): 429−452.
    [2]
    Losa S N, Kivman G A, Ryabchenko V A. Weak constraint parameter estimation for a simple ocean ecosystem model: what can we learn about the model and data?[J]. Journal of Marine Systems, 2004, 45(1/2): 1−20.
    [3]
    Mateus M D, Franz G. Sensitivity analysis in a complex marine ecological model[J]. Water, 2015, 7(5): 2060−2081.
    [4]
    Kishi M J, Nakata K, Ishikawa K. Sensitivity analysis of a coastal marine ecosystem[J]. Journal of the Oceanographical Society of Japan, 1981, 37(3): 120−134. doi: 10.1007/BF02308096
    [5]
    高会旺, 孙文心, 翟雪梅. 水层生态系统动力学模式参数的敏感性分析[J]. 青岛海洋大学学报, 1999, 29(3): 398−404.

    Gao Huiwang, Sun Wenxin, Zhai Xuemei. Sensitive analysis of the parameters of a pelagic ecosystem dynamic model[J]. Journal of Ocean University of Qingdao, 1999, 29(3): 398−404.
    [6]
    赵亮. 渤海浮游植物生态动力学模型研究[D]. 青岛: 青岛海洋大学, 2002.

    Zhao Liang. A modeling study of the phytoplankton dynamic in the Bohai Sea[D]. Qingdao: Ocean University of China, 2002.
    [7]
    Kuroda H, Kishi M J. A data assimilation technique applied to estimate parameters for the NEMURO marine ecosystem model[J]. Ecological Modelling, 2004, 172(1): 69−85. doi: 10.1016/j.ecolmodel.2003.08.015
    [8]
    Ji X L, Liu G M, Gao S, et al. Parameter sensitivity study of the biogeochemical model in the China coastal seas[J]. Acta Oceanologica Sinica, 2015, 34(12): 51−60. doi: 10.1007/s13131-015-0762-0
    [9]
    Losa S N, Vézina A, Wright D, et al. 3D ecosystem modelling in the North Atlantic: relative impacts of physical and biological parameterizations[J]. Journal of Marine Systems, 2006, 61(3/4): 230−245.
    [10]
    Fennel K, Losch M, Schröter J, et al. Testing a marine ecosystem model: sensitivity analysis and parameter optimization[J]. Journal of Marine Systems, 2001, 28(1/2): 45−63.
    [11]
    王春晖. 海洋生态系统动力学模型伴随同化研究及应用[D]. 青岛: 中国海洋大学, 2013.

    Wang Chunhui. Numerical study and application of a marine ecosystem dynamical model with adjoint assimilation method[D]. Qingdao: Ocean University of China, 2013.
    [12]
    俞光耀, 吴增茂, 张志南, 等. 胶州湾北部水层生态动力学模型与模拟Ⅰ. 胶州湾北部水层生态动力学模型[J]. 青岛海洋大学学报, 1999, 29(3): 421−428.

    Yu Guangyao, Wu Zengmao, Zhang Zhinan, et al. A pelagic ecosystem model and simulation of the northern part of Jiaozhou Bay Ⅰ. Introduction to pelagic ecosystem model[J]. Journal of Ocean University of Qingdao, 1999, 29(3): 421−428.
    [13]
    吴增茂, 俞光耀, 张志南, 等. 胶州湾北部水层生态动力学模型与模拟Ⅱ. 胶州湾北部水层生态动力学的模拟研究[J]. 青岛海洋大学学报, 1999, 29(3): 429−435.

    Wu Zengmao, Yu Guangyao, Zhang Zhinan, et al. A pelagic ecosystem model and simulation of the northern part of Jiaozhou Bay Ⅱ. A simulation study on the pelagic ecosystem Seasonal variations[J]. Journal of Ocean University of Qingdao, 1999, 29(3): 429−435.
    [14]
    Zhu Hai, Cui Maochang. Coupled physical-ecological modelling of the central part of Jiaozhou Bay Ⅰ. Physical modelling[J]. Chinese Journal of Oceanology and Limnology, 2000, 18(4): 309−314. doi: 10.1007/BF02876077
    [15]
    Cui Maochang, Zhu Hai. Coupled physical-ecological modelling in the central part of Jiaozhou Bay Ⅱ. Coupled with an ecological model[J]. Chinese Journal of Oceanology and Limnology, 2001, 19(1): 21−28. doi: 10.1007/BF02842785
    [16]
    魏皓, 赵亮, 于志刚, 等. 渤海浮游植物生物量时空变化初析[J]. 青岛海洋大学学报, 2003, 33(2): 173−179. doi: 10.3969/j.issn.1672-5174.2003.02.002

    Wei Hao, Zhao Liang, Yu Zhigang, et al. Variation of the phytoplankton biomass in the Bohai Sea[J]. Journal of Ocean University of Qingdao, 2003, 33(2): 173−179. doi: 10.3969/j.issn.1672-5174.2003.02.002
    [17]
    Wei Hao, Sun Jun, Moll A, et al. Phytoplankton dynamics in the Bohai Sea—observations and modelling[J]. Journal of Marine Systems, 2004, 44(3/4): 233−251.
    [18]
    Zhao Liang, Wei Hao. The influence of physical factors on the variation of phytoplankton and nutrients in the Bohai Sea[J]. Journal of Oceanography, 2005, 61(2): 335−342. doi: 10.1007/s10872-005-0044-0
    [19]
    夏洁, 高会旺. 南黄海东部海域浮游生态系统要素季节变化的模拟研究[J]. 安全与环境学报, 2006, 6(4): 59−65. doi: 10.3969/j.issn.1009-6094.2006.04.016

    Xia Jie, Gao Huiwang. Simulation on seasonal cycle vertical structure of plankton ecosystem in eastern area of South Yellow Sea[J]. Journal of Safety and Environment, 2006, 6(4): 59−65. doi: 10.3969/j.issn.1009-6094.2006.04.016
    [20]
    刘浩, 尹宝树. 渤海生态动力过程的模型研究Ⅰ. 模型描述[J]. 海洋学报, 2006, 28(6): 21−31. doi: 10.3321/j.issn:0253-4193.2006.06.004

    Liu Hao, Yin Baoshu. Model study on Bohai ecosystem Ⅰ. Model description and primary productivity[J]. Haiyang Xuebao, 2006, 28(6): 21−31. doi: 10.3321/j.issn:0253-4193.2006.06.004
    [21]
    刘浩, 潘伟然. 营养盐负荷对浮游植物水华影响的模型研究[J]. 水科学进展, 2008, 19(3): 345−351. doi: 10.3321/j.issn:1001-6791.2008.03.007

    Liu Hao, Pan Weiran. Model for study on Impact of external nutrient sources on the Algalbloom[J]. Advances in Water Science, 2008, 19(3): 345−351. doi: 10.3321/j.issn:1001-6791.2008.03.007
    [22]
    Shchepetkin A F, McWilliams J C. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model[J]. Ocean Modelling, 2005, 9(4): 347−404. doi: 10.1016/j.ocemod.2004.08.002
    [23]
    Chai F, Dugdale R C, Peng T H, et al. One-dimensional ecosystem model of the equatorial Pacific upwelling system. Part Ⅰ: model development and silicon and nitrogen cycle[J]. Deep–Sea Research Part Ⅱ: Topical Studies in Oceanography, 2002, 49(13/14): 2713−2745.
    [24]
    Dee D P, Uppala S M, Simmons A J, et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(656): 553−597. doi: 10.1002/qj.v137.656
    [25]
    Wang Jianing, Yan Weijin, Chen Nengwang, et al. Modeled long-term changes of DIN:DIP ratio in the Changjiang River in relation to Chl-α and DO concentrations in adjacent estuary[J]. Estuarine, Coastal and Shelf Science, 2015, 166: 153−160. doi: 10.1016/j.ecss.2014.11.028
    [26]
    Zhang Jing. Nutrient elements in large Chinese estuaries[J]. Continental Shelf Research, 1996, 16(8): 1023−1045. doi: 10.1016/0278-4343(95)00055-0
    [27]
    Liu S M, Hong G H, Zhang J, et al. Nutrient budgets for large Chinese estuaries[J]. Biogeosciences, 2009, 6(10): 2245−2263. doi: 10.5194/bg-6-2245-2009
    [28]
    Tong Yindong, Zhao Yue, Zhen Gengchong, et al. Nutrient loads flowing into coastal waters from the main rivers of China (2006–2012)[J]. Scientific Reports, 2015, 5: 16678. doi: 10.1038/srep16678
    [29]
    Zielinski O, Llinás O, Oschlies A, et al. Underwater light field and its effect on a one-dimensional ecosystem model at station ESTOC, north of the Canary Islands[J]. Deep–Sea Research Part Ⅱ: Topical Studies in Oceanography, 2002, 49(17): 3529−3542. doi: 10.1016/S0967-0645(02)00096-6
    [30]
    Evans G T, Parslow J S. A model of annual plankton cycles[J]. Biological Oceanography, 1985, 3(3): 327−347.
    [31]
    Zhou Feng, Chai Fei, Huang Daji, et al. Investigation of hypoxia off the Changjiang Estuary using a coupled model of ROMS-CoSiNE[J]. Progress in Oceanography, 2017, 159: 237−254. doi: 10.1016/j.pocean.2017.10.008
    [32]
    Fujii M, Chai Fei. Modeling carbon and silicon cycling in the equatorial Pacific[J]. Deep–Sea Research Part Ⅱ: Topical Studies in Oceanography, 2007, 54(5/7): 496−520.
    [33]
    Fujii M, Boss E, Chai F. The value of adding optics to ecosystem models: a case study[J]. Biogeosciences Discussions, 2007, 4(3): 1585−1631. doi: 10.5194/bgd-4-1585-2007
    [34]
    Kishi M J, Kashiwai M, Ware D M, et al. NEMURO—a lower trophic level model for the North Pacific marine ecosystem[J]. Ecological Modelling, 2007, 202(1/2): 12−25.
    [35]
    Popova E E, Lozano C J, Srokosz M A, et al. Coupled 3D physical and biological modelling of the mesoscale variability observed in North-East Atlantic in spring 1997: biological processes[J]. Deep–Sea Research Part Ⅰ: Oceanographic Research Papers, 2002, 49(10): 1741−1768. doi: 10.1016/S0967-0637(02)00091-2
    [36]
    Ji Rubao, Davis C, Chen Changsheng, et al. Influence of local and external processes on the annual nitrogen cycle and primary productivity on Georges Bank: a 3-D biological–physical modeling study[J]. Journal of Marine Systems, 2008, 73(1/2): 31−47.
    [37]
    Kawamiya M, Kishi M J, Suginohara N. An ecosystem model for the North Pacific embedded in a general circulation model: Part Ⅰ: Model description and characteristics of spatial distributions of biological variables[J]. Journal of Marine Systems, 2000, 25(2): 129−157. doi: 10.1016/S0924-7963(00)00012-9
    [38]
    Lima I D, Doney S C. A three-dimensional, multinutrient, and size-structured ecosystem model for the North Atlantic[J]. Global Biogeochemical Cycles, 2004, 18(3): GB3019.
    [39]
    官文江, 何贤强, 潘德炉, 等. 渤、黄、东海海洋初级生产力的遥感估算[J]. 水产学报, 2005, 29(3): 367−372.

    Guan Wenjiang, He Xianqiang, Pan Delu, et al. Estimation of ocean primary production by remote sensing in Bohai Sea, Yellow Sea and East China Sea[J]. Journal of Fisheries of China, 2005, 29(3): 367−372.
    [40]
    朱兰部, 赵保仁. 渤、黄、东海透明度的分布与变化[J]. 海洋湖沼通报, 1991(3): 1−11.

    Zhu Lanbu, Zhao Baoren. Distributions and variations of the transparency in the Bohai Sea, Yellow Sea and East China Sea[J]. Transactions of Oceanology and Limnology, 1991(3): 1−11.
    [41]
    高会旺, 杨华, 张英娟, 等. 渤海初级生产力的若干理化影响因子初步分析[J]. 青岛海洋大学学报, 2001, 31(4): 487−494. doi: 10.3969/j.issn.1672-5174.2001.04.004

    Gao Huiwang, Yang Hua, Zhang Yingjuan, et al. A preliminary study on factors affecting the primary production in the Bohai Sea[J]. Journal of Ocean University of Qingdao, 2001, 31(4): 487−494. doi: 10.3969/j.issn.1672-5174.2001.04.004
    [42]
    洪华生. 中国区域海洋学: 化学海洋学[M]. 北京: 海洋出版社, 2012.

    Hong Huasheng. Regional Oceanography of China Seas: Chemical Oceanography[M]. Beijing: China Ocean Press, 2012.
  • Relative Articles

    [1]Tang Jingrong, Wei Qinsheng, Zhao Yuhang, Sun Xia, Xin Ming, Xie Linping, Wang Baodong. Distributions of dissolved oxygen and hypoxic characteristics in the Bohai Sea and the northern Yellow Sea during the late summer-early autumn in 2021[J]. Haiyang Xuebao. doi: 10.12284/hyxb2025032
    [2]ZHAO Jiayue, YANG Wei, BAI Junhong. Evaluation system establishment of nursery function for three seagrass beds and their spatial differences in the nearshore Bohai Sea[J]. Haiyang Xuebao.
    [3]Wu Haowen, Zhao Yanling, Han Guijun, Li Wei, Cao Lige, Wu Xiaobo, Li Chaoliang, Li Yundong, Zhou Gongfu. Bathymetry estimation using ensemble adjustment Kalman filter in the numerical simulation of M2 constituent[J]. Haiyang Xuebao, 2022, 44(6): 10-21. doi: 10.12284/hyxb2022057
    [4]Zhu Qinghuan, Tian Yongjun, Zhang Chi, Ye Zhenjiang, Xu Binduo. Daily age and growth of young-of-the-year Scomberomorus niphonius in the Yellow Sea and Bohai Sea based on otolith microstructure[J]. Haiyang Xuebao, 2020, 42(2): 87-95. doi: 10.3969/j.issn.0253-4193.2020.02.009
    [5]Wang Xuejing, Jin Chunjie, Wang Lisha, Zhang Chuansong. Distribution characteristics and influencing factors of particulate organic carbon in the Yellow Sea and the Bohai Sea in summer of 2016[J]. Haiyang Xuebao, 2018, 40(10): 200-208. doi: 10.3969/j.issn.0253-4193.2018.10.019
    [6]Gao Hanling, Zou Li, Wang Kai, Ye Xiwen. Compositional distribution and transformation of terrestrial lipid organic matter in the sediments of the Yellow Sea and Bohai Sea[J]. Haiyang Xuebao, 2017, 39(2): 53-61. doi: 10.3969/j.issn.0253-4193.2017.02.005
    [7]Zhang Haibo, Yang Luning, Wang Lisha, Pei Shaofeng, Shi Xiaoyong. Distribution and source analyses of particulate organic carbon in the Yellow Sea and Bohai Sea during summer, 2013[J]. Haiyang Xuebao, 2016, 38(8): 24-35. doi: 10.3969/j.issn.0253-4193.2016.08.003
    [8]Ji Shunying, Wang Anliang, Mi Lili, Liu Yu, Li Baohui. Modified discrete element model for sea ice dynamics and its applications in the Bohai Sea[J]. Haiyang Xuebao, 2015, 37(5): 54-67. doi: 10.3969/j.issn.0253-4193.2015.05.006
    [9]Liu Zhiqiang, Su Jie, Shi Xiaoxu, Zhao Jinping. Study on the multi-band retrieval algorithm for the Bohai Sea ice concentration using AVHRR data[J]. Haiyang Xuebao, 2014, 36(11): 74-84. doi: 10.3969/j.issn.0253-4193.2014.11.009
    [10]Qin Ping, Shen Yue, Mu Bing, Hao Yanling, Zhu Jianhua, Cui Tingwei. Retrieval models of total suspended matter and chlorophyll a concentration in Yellow Sea based on HJ-1 CCD data and evolutionary modeling method[J]. Haiyang Xuebao, 2014, 36(11): 142-149. doi: 10.3969/j.issn.0253-4193.2014.11.016
    [11]LIU Hao, YIN Bao-shu. Model study on Bohai ecosystem Ⅱ. Annual cycle of nutrient-phytoplankton dynamics[J]. Haiyang Xuebao, 2007, 29(4): 20-33.
    [12]LIU Hao, YIN Bao-shu. Model study on Bohai ecosystem Ⅰ. Model description and primary productivity[J]. Haiyang Xuebao, 2006, 28(6): 21-31.
    [13]SU Jie, WU Hui-ding, LIU Qin-zhen, ZHANG Yun-fei, BAI Shan. A coupledice-ocean model for the Bohai Sea Ⅰ. Study on model and parameter[J]. Haiyang Xuebao, 2005, 27(1): 19-26.
    [14]XUE Chun-ting, ZHOU Yong-qing, ZHU Xiong-hua. The Huanghe River course and delta from end of Late Pleistocene to the 7th century BC[J]. Haiyang Xuebao, 2004, 26(1): 48-61.
    [15]YE Xi-wen, LIU Su-mei, ZHANG Jing. Ditermination of biogenic opal in sediment of the Huanghai and Bohai Sea and questions in the method[J]. Haiyang Xuebao, 2002, 24(1): 129-134.
    [16]BAI Shan, LIU Qin-zheng, WU Hui-ding, Wang Yong-liang. Relation of ice conditions with climate change in the Bohai Sea and the northern Huanghai Sea[J]. Haiyang Xuebao, 2001, 23(5): 33-41.
    [17]HAN Gui-jun, FANG Guo-hong, MA Ji-rui, LIU Ke-xiu, LI Dong. Optimizing open boundary conditions of nonlinear tidal model using adjoint method Ⅱ. Assimilation experiment for tide in the Huanghai Sea and the East China Sea[J]. Haiyang Xuebao, 2001, 23(2): 26-31.
    [18]SU Ji-lan. A review of circulation dynamics of the coastal oceans near China[J]. Haiyang Xuebao, 2001, 23(4): 1-16.
    [19]CAO Cong-hua, GUO Ke-cai, LI Kun-ping, CHEN Ze-shi. Synoptic analyses for the formation of large-amplitude seiche in the main harbors along the coasts of the Bohai Sea and the Huanghai Sea[J]. Haiyang Xuebao, 2001, 23(5): 24-32.
    [20]BAO Xian-wen, WANG Ci-zhen, GAO Guo-ping, HUANG Lei. Thermal structural analysis and simulation of the Bohai Sea and the Huanghai Seas[J]. Haiyang Xuebao, 2001, 23(6): 24-31.
  • Cited by

    Periodical cited type(4)

    1. 张媛媛,刘建卫,田晶,陈小强. 辽东湾北部河流氮磷入海通量及污染源解析. 水资源与水工程学报. 2024(04): 29-37+46 .
    2. 彭俊,凌敏,俞珊妮,赵宇杰,高静. 1950—2014年黄河流域输沙量变化特征及下游河道冲淤响应. 滁州学院学报. 2022(02): 1-7+19 .
    3. 王圣,赵亮,张海彦,李菲. 黄海绿潮生消过程及其主导因素. 海洋与湖沼. 2022(06): 1338-1348 .
    4. 孙雪,魏皓,张海彦,王彦涛,张广跃,刘汉霖. 近岸海域大型水母来源与迁移路径分析——以红沿河电厂海域为例. 海洋与湖沼. 2019(06): 1281-1291 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-06051015
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.0 %FULLTEXT: 19.0 %META: 79.3 %META: 79.3 %PDF: 1.7 %PDF: 1.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.4 %其他: 6.4 %其他: 0.3 %其他: 0.3 %China: 0.6 %China: 0.6 %France: 0.6 %France: 0.6 %India: 0.3 %India: 0.3 %Seongnam-si: 0.9 %Seongnam-si: 0.9 %上海: 2.9 %上海: 2.9 %临沂: 0.6 %临沂: 0.6 %保定: 0.3 %保定: 0.3 %北京: 10.5 %北京: 10.5 %南京: 0.3 %南京: 0.3 %南宁: 0.3 %南宁: 0.3 %台州: 0.3 %台州: 0.3 %嘉兴: 0.3 %嘉兴: 0.3 %天津: 1.7 %天津: 1.7 %宁波: 0.3 %宁波: 0.3 %密蘇里城: 0.3 %密蘇里城: 0.3 %巴厘岛: 0.6 %巴厘岛: 0.6 %常州: 0.3 %常州: 0.3 %张家口: 4.7 %张家口: 4.7 %成都: 0.3 %成都: 0.3 %杭州: 0.6 %杭州: 0.6 %武汉: 1.2 %武汉: 1.2 %济宁: 0.6 %济宁: 0.6 %深圳: 0.6 %深圳: 0.6 %漯河: 0.6 %漯河: 0.6 %烟台: 0.3 %烟台: 0.3 %益山: 0.9 %益山: 0.9 %芒廷维尤: 49.3 %芒廷维尤: 49.3 %芝加哥: 0.9 %芝加哥: 0.9 %苏州: 0.3 %苏州: 0.3 %衢州: 0.6 %衢州: 0.6 %西宁: 7.0 %西宁: 7.0 %西安: 0.3 %西安: 0.3 %运城: 0.6 %运城: 0.6 %邯郸: 0.3 %邯郸: 0.3 %重庆: 0.3 %重庆: 0.3 %青岛: 3.2 %青岛: 3.2 %其他其他ChinaFranceIndiaSeongnam-si上海临沂保定北京南京南宁台州嘉兴天津宁波密蘇里城巴厘岛常州张家口成都杭州武汉济宁深圳漯河烟台益山芒廷维尤芝加哥苏州衢州西宁西安运城邯郸重庆青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article views (531) PDF downloads(203) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return