Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Chen Guanyu, Ai Weihua, Lu Wen, Feng Mengyan. Sensitivity analysis of remote sensing of sea surface temperature by one dimensional synthetic aperture microwave radiometer[J]. Haiyang Xuebao, 2019, 41(3): 143-154. doi: 10.3969/j.issn.0253-4193.2019.03.014
Citation: Chen Guanyu, Ai Weihua, Lu Wen, Feng Mengyan. Sensitivity analysis of remote sensing of sea surface temperature by one dimensional synthetic aperture microwave radiometer[J]. Haiyang Xuebao, 2019, 41(3): 143-154. doi: 10.3969/j.issn.0253-4193.2019.03.014

Sensitivity analysis of remote sensing of sea surface temperature by one dimensional synthetic aperture microwave radiometer

doi: 10.3969/j.issn.0253-4193.2019.03.014
  • Received Date: 2018-01-20
  • Rev Recd Date: 2018-07-09
  • Compared with the traditional microwave radiometer, one dimensional synthetic aperture microwave radiometer can effectively improve the spatial resolution of sea surface temperature retrieval. However, the spaceborne one dimensional synthetic aperture microwave radiometer is multiple incidence angle observation for the sea target and the incidence angle changes from 0° to 55°. In order to develop sea surface temperature inversion algorithms suited to one dimensional synthetic aperture microwave radiometer, it is necessary to evaluate the sensitivities of brightness temperature to oceanic and atmospheric environmental elements. Using the sea surface emissivity model and the atmospheric radiative transfer model, we construct a oceanic and atmospheric radiative transfer mode suited to the one dimensional synthetic aperture microwave radiometer. In this paper, the sensitivity changes of C-band vertical and horizontal polarization brightness temperature to oceanic and atmospheric environmental elements at different incidence angles are studied, and the corresponding sensitivity coefficients are calculated. The results indicate that the sensitivities of vertical and horizontal polarization brightness temperature to oceanic and atmospheric environmental elements show different characteristics. With the increase of the incidence angle, the sensitivity of the vertical polarization brightness temperature to the sea surface temperature is enhanced, and the sensitivity to the sea surface wind field is relatively weakened; but the horizontal polarization brightness temperature is opposite. The vertical and horizontal polarization brightness temperature errors caused by the errors of atmospheric water vapor content and cloud liquid water content increase with the increasing of the incidence angle, however, even at a large incidence angle of 55°, the errors of vertical and horizontal polarization brightness temperature are still less than 0.12 K. If the accuracy of sea surface temperature inversion is higher than 1 K, the calibration precision of one dimensional synthetic aperture microwave radiometer should be better than 0.6 K. Overall, the results of this paper are of great significance to the research of sea surface temperature retrieval with multiple incidence angle for one dimensional synthetic aperture microwave radiometer.
  • loading
  • Curry J A, Bentamy A, Bourassa M A, et al. Seaflux[J]. Bulletin of the American Meteorological Society, 2004, 85(3): 409-424.
    Guan Lei, Kawamura H. SST availabilities of satellite infrared and microwave measurements[J]. Journal of Oceanography, 2003, 59(2): 201-209.
    Wentz F J, Meissner T. AMSR ocean algorithm, version 2[R]. Santa Barbara, CA: Remote Sensing Systems, 2000.
    Schanda E. Multiple wavelength aperture synthesis for passive sensing of the earth's surface[C]//Proceedings of 1979 Antennas and Propagation Society International Symposium. Seattle, WA, USA: IEEE, 1979: 762-763.
    Ruf C S, Swift C T, Tanner A B, et al. Interferometric synthetic aperture microwave radiometry for the remote sensing of the earth[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(5): 597-611.
    Le Vine D M. Synthetic aperture radiometer systems[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(12): 2228-2236.
    吴季, 刘浩, 孙伟英, 等. 综合孔径微波辐射计的技术发展及其应用展望[J]. 遥感技术与应用, 2005, 20(1): 24-29. Wu Ji, Liu Hao, Sun Weiying, et al. Technical development and application prospect of synthetic aperture radiometer[J]. Remote Sensing Technology and Application, 2005, 20(1): 24-29.
    董晓龙, 吴季, 黄永辉. 综合孔径微波辐射计及其反演成像[J]. 遥感技术与应用, 2000, 15(2): 74-78. Dong Xiaolong, Wu Ji, Huang Yonghui. Synthetic aperture microwave radiometer and image retrieval[J]. Remote Sensing Technology and Application, 2000, 15(2): 74-78.
    Le Vine D M, Griffis A J, Swift C T, et al. ESTAR: a synthetic aperture microwave radiometer for remote sensing applications[J]. Proceedings of the IEEE, 1994, 82(12): 1787-1801.
    Lambrigtsen B, Wilson W, Tanner A, et al. GeoSTAR-a microwave sounder for geostationary satellites[C]//Proceedings of 2004 IEEE International Geoscience and Remote Sensing Symposium. Anchorage, AK, USA: IEEE, 2004: 777-780.
    Liu Hao, Wu Ji, Ban Shouzheng, et al. The CAS airborne X-band synthetic aperture radiometer: system configuration and experimental results[C]//Proceedings of 2004 IEEE International Geoscience and Remote Sensing Symposium. Anchorage, AK, USA: IEEE, 2004: 2230-2233.
    Kerr Y, Font J, Waldteufel P, et al. New radiometers: SMOS-a dual pol L-band 2D aperture synthesis radiometer[C]//Proceedings of 2000 IEEE Aerospace Conference. Big Sky, MT, USA: IEEE, 2000: 119-128.
    王蕊, 严卫, 史顺文, 等. 全极化微波辐射计对环境参数敏感性分析[J]. 遥感学报, 2015, 19(3): 375-390. Wang Rui, Yan Wei, Shi Shunwen, et al. Environmental parameter sensitivity analysis for polarimetric microwave radiometer[J]. Journal of Remote Sensing, 2015, 19(3): 375-390.
    张宜振, 韩震, 王新新, 等. 海面风矢量对不同极化状态海表面亮温的遥感影响研究[J]. 海洋环境科学, 2016, 35(6): 853-860. Zhang Yizhen, Han Zhen, Wang Xinxin, et al. The influence of sea surface wind vector on the sea surface brightness temperature remote sensing in different polarization[J]. Marine Environmental Science, 2016, 35(6): 853-860.
    王雨, 傅云飞, 刘奇, 等. 一种基于TMI观测结果的海表温度反演算法[J]. 气象学报, 2011, 69(1): 149-160. Wang Yu, Fu Yunfei, Liu Qi, et al. An algorithm for sea surface temperature retrieval based on TMI measurements[J]. Acta Meteorologica Sinica, 2011, 69(1): 149-160.
    王迎强, 严卫, 严明. 基于星载微波辐射计的海面风场对海表盐度反演影响研究[J]. 遥感技术与应用, 2016, 31(6): 1037-1044. Wang Yingqiang, Yan Wei, Yan Ming. The effects of sea surface wind on sea surface salinity retrieval based on spaceborne microwave radiometer[J]. Remote Sensing Technology and Application, 2016, 31(6): 1037-1044.
    李化良, 韩震, 张宜振, 等. SMOS卫星海表面亮温数据与海表面盐度数据的相关性研究[J]. 遥感技术与应用, 2016, 31(1): 143-148. Li Hualiang, Han Zhen, Zhang Yizhen, et al. Correlation of SMOS satellite sea surface brightness temperature data and the sea surface salinity data[J]. Remote Sensing Technology and Application, 2016, 31(1): 143-148.
    Meissner T, Wentz F J. The emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and earth incidence angles[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(8): 3004-3026.
    Gasiewski A J, Kunkee D B. Polarized microwave emission from water waves[J]. Radio Science, 1994, 29(6): 1449-1466.
    Petty G W. On the response of the special sensor microwave/imager to the marine environment: implications for atmospheric parameter retrievals[D]. Seattle: Washington University, 1990.
    Yueh S H. Modeling of wind direction signals in polarimetric sea surface brightness temperatures[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(6): 1400-1418.
    Isers A B, Puzenko A A, Fuks I M. The local perturbation method for solving the problem of diffraction from a surface with small slope irregularities[J]. Journal of Electromagnetic Waves and Applications, 1991, 5(12): 1419-1435.
    Irisov V G. Small-slope expansion for thermal and reflected radiation from a rough surface[J]. Waves in Random Media, 1997, 7(1): 1-10.
    Meissner T, Wentz F J. The complex dielectric constant of pure and sea water from microwave satellite observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(9): 1836-1849.
    Liebe H J. MPM—An atmospheric millimeter-wave propagation model[J]. International Journal of Infrared and Millimeter Waves, 1989, 10(6): 631-650.
    Rosenkranz P W. Water vapor microwave continuum absorption: a comparison of measurements and models[J]. Radio Science, 1998, 33(4): 919-928.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (494) PDF downloads(221) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return