Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Yang Jungang, Zhang Jie, Wang Guizhong. Analysis of Arctic seas surface wind field and ocean wave remote sensing observation capability[J]. Haiyang Xuebao, 2018, 40(11): 105-115. doi: 10.3969/j.issn.0253-4193.2018.11.011
Citation: Yang Jungang, Zhang Jie, Wang Guizhong. Analysis of Arctic seas surface wind field and ocean wave remote sensing observation capability[J]. Haiyang Xuebao, 2018, 40(11): 105-115. doi: 10.3969/j.issn.0253-4193.2018.11.011

Analysis of Arctic seas surface wind field and ocean wave remote sensing observation capability

doi: 10.3969/j.issn.0253-4193.2018.11.011
  • Received Date: 2018-01-20
  • Rev Recd Date: 2018-02-27
  • Satellite remote sensing is an important method to study the distribution and variation of sea surface winds and ocean waves in the Arctic seas. Based on remote sensing data of the orbiting multi-source satellites, the observation capability of the sea surface wind and the ocean wave in the Arctic Ocean is analyzed from three aspects:spatial coverage of remote sensing observations, time coverage and remote sensing data merging. It is concluded as follows. The ASCAT and HY-2A scatterometers can be used for sea surface wind remote sensing observation in the Arctic seas and the multi-satellite joint observation can obtain the sea surface wind remote sensing data with the spatial and temporal resolution of better than 12 hours and 0.1° in the Arctic Ocean. Based on the HY-2A, CryoSat-2, SARAL and Sentinel-3 altimeters, the remote sensing observations of the Arctic seas waves can be realized. The multi-satellite joint observations can obtain the ocean wave remote sensing data of the spatial and temporal resolution of 1 day and 0.25° in the Arctic seas. Based on sea surface wind and ocean wave fusion data in 2016, it is concluded that sea surface wind and ocean wave in the Arctic seas are high from January to March and then decrease to the minimum in July, then gradually increase. The results show that sea surface wind and ocean wave in the Arctic seas can be monitored by multi-source scatterometers and altimeters with high spatial and temporal resolution.
  • loading
  • 郑中义. 北极航运的现状与面临的挑战[J]. 中国远洋航务, 2013(10):46-49. Zheng Zhongyi. Arctic shipping status and challenges[J]. Maritime China, 2013(10):46-49.
    窦芳丽, 商建, 郭杨, 等. 卫星遥感海面风技术现状及应用进展[J]. 气象科技进展, 2017, 7(4):6-11. Dou Fangli, Shang Jian, Guo Yang, et al. Satellite remote sensing of sea surface winds:technique status and application progress[J]. Advances in Meteorological Science and Technology, 2017, 7(4):6-11.
    Anderson D, Hollingsworth A, Uppala S, et al. A study of the use of scatterometer data in the European Centre for Medium-Range Weather Forecasts operational analysis-forecast model:2. Data impact[J]. Journal of Geophysical Research:Oceans, 1991, 96(C2):2635-2647.
    蒋兴伟, 宋清涛. 基于微波散射计观测的气候态海面风场和风应力场[J]. 海洋学报, 2010, 32(6):83-90. Jiang Xingwei, Song Qingtao. A climatology of sea surface wind speed and wind stress fields constructed from scatterometer observations[J]. Haiyang Xuebao, 2010, 32(6):83-90.
    Dong Xiaolong, Xu Ke, Liu Heguang, et al. The radar altimeter and scatterometer of China's HY-2 satellite[C]//Proceedings of 2004 IEEE International Geoscience and Remote Sensing Symposium, 2004.Anchorage, AK, USA:IEEE, 2004:1703-1706.
    Klaes K D, Cohen M, Buhler Y, et al. An introduction to the EUMETSAT polar system[J]. Bulletin of the American Meteorological Society, 2007, 88(7):1085-1096.
    Bentamy A, Croize-Fillon D, Perigaud C. Characterization of ASCAT measurements based on buoy and QuikSCAT wind vector observation[J]. Ocean Science Discussions, 2008, 4(4):265-274.
    Wang He, Zhu Jianhua, Lin Mingsen, et al. First six months quality assessment of HY-2A SCAT wind products using in situ measurements[J]. Acta Oceanologica Sinica, 2013, 32(11):27-33.
    韩伟孝, 杨俊钢, 王际朝. 基于浮标数据的卫星雷达高度计海浪波高数据评价与校正[J]. 海洋学报, 2016, 38(11):73-89. Han Weixiao, Yang Jungang, Wang Jichao. Calibration and evaluation of satellite radar altimeter wave heights with in situ buoy data[J]. Haiyang Xuebao, 2016, 38(11):73-89.
    Wang Jichao, Zhang Jie, Yang Jungang. The validation of HY-2 altimeter measurements of a significant wave height based on buoy data[J]. Acta Oceanologica Sinica, 2013, 32(11):87-90.
    Kako S, Isobe A, Kubota M. High-resolution ASCAT wind vector data set gridded by applying an optimum interpolation method to the global ocean[J]. Journal of Geophysical Research:Atmospheres, 2011, 116(D23):D23107.
    Yan Qiushuang, Zhang Jie, Meng Junmin, et al. Use of an optimum interpolation method to construct a high-resolution global ocean surface vector wind dataset from active scatterometers and passive radiometers[J]. International Journal of Remote Sensing, 2017, 38(20):5569-5591.
    张婷, 张杰, 杨俊钢. 基于ASCAT散射计数据的2012年南极周边海面风场特征分析[J]. 极地研究, 2014, 26(4):481-486. Zhang Ting, Zhang Jie, Yang Jungang. Sea surface wind field analysis in the Southern Ocean in 2012 using ASCAT wind field data[J]. Chinese Journal of Polar Research, 2014, 26(4):481-486.
    韩伟孝. 基于多源卫星遥感数据的全球海浪产品研究及应用[D]. 青岛:国家海洋局第一海洋研究所, 2017. Han Weixiao. Research and application of global ocean wave products based on multi-source satellite remote sensing data[D]. Qingolao:The First Institute of Oceanography, State Oceanic Administration, 2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (736) PDF downloads(194) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return