Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Feng Guiping, Song Qingtao, Jiang Xingwei, Chang Liang. Land water and glaciers contributions to global sea level change from satellite gravity measurements[J]. Haiyang Xuebao, 2018, 40(11): 85-95. doi: 10.3969/j.issn.0253-4193.2018.11.009
Citation: Feng Guiping, Song Qingtao, Jiang Xingwei, Chang Liang. Land water and glaciers contributions to global sea level change from satellite gravity measurements[J]. Haiyang Xuebao, 2018, 40(11): 85-95. doi: 10.3969/j.issn.0253-4193.2018.11.009

Land water and glaciers contributions to global sea level change from satellite gravity measurements

doi: 10.3969/j.issn.0253-4193.2018.11.009
  • Received Date: 2018-02-15
  • Rev Recd Date: 2018-05-19
  • The Gravity Recovery and Climate Experiment (GRACE) satellite mission launched in 2002 provided an opportunity to estimate the global land and ocean water mass variations with high temporal-spatial resolution. In this paper, we use the GRACE RL05 data from January 2003 to December 2014 to estimate the ocean mass variations. We applied 500 km Gaussian smoothing, a decorrelation filtering and a forward modelling to reduce the land-ocean leakage effects. Land water and glaciers contributions to global sea level change are investigated. Results show that the long-term trend of the mass-induced sea level variations is (2.09±0.54) mm/a, which has a good agreement with the steric sea level change of (2.07±0.62) mm/a from the satellite altimetry and Argo data. The contribution of land water to sea level change is (0.15±0.25) mm/a. The glacier melting contribution to sea level rise is (0.72±0.12) mm/a in Greenland, (0.59±0.10) mm/a in Antarctica, and (0.63±0.09) mm/a for the mountain glaciers (including Alaska, Iceland, Canadian Arctic, High Mountain Asia and Patagonia). Furthermore, the impact of the GRACE gravity field coefficients from different GRACE analysis centers (CSR, JPL and GFZ), first-order coefficient and the second-order coefficient to sea level change are discussed. The impact of first-order coefficient to the mass-induced sea level variations is (0.10±0.08) mm/a, and the second-order coefficient to the mass-induced sea level variations is (0.16±0.04) mm/a. The results from CSR are consistent with GFZ results, while the JPL's results are slightly smaller.
  • loading
  • Rhein M, Rintoul S R, Aoki S, et al. Observations:Ocean[M]//Stocker T F, Qin D, Plattner G-K, et al. Climate Change 2013:The Physical Science Basis. Cambridge:Cambridge University Press, 2013.
    Bindoff N L, Willebrand J, Artale V, et al. Observations:oceanic climate change and sea level[M]//Solomon S, Qin D, Manning M, et al. Climate Change 2007:The Physical Science Basis, Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge:Cambridge University Press, 2007:385-428.
    Tapley B D, Bettadpur S, Ries J C, et al. GRACE measurements of mass variability in the Earth system[J]. Science, 2004, 305(5683):503-505.
    Jin S G, Hassan A A, Feng G P. Assessment of terrestrial water contributions to polar motion from GRACE and hydrological models[J]. Journal of Geodynamics, 2012, 62:40-48.
    Jin S G, Feng G P. Large-scale variations of global groundwater from satellite gravimetry and hydrological models, 2002-2012[J]. Global and Planetary Change, 2013, 106:20-30.
    Willis J K, Chambers D P, Nerem R S. Assessing the globally averaged sea level budget on seasonal to interannual timescales[J]. Journal of Geophysical Research, 2008, 113(C6):C06015.
    Chen J L, Wilson C R, Blankenship D D, et al. Antarctic mass rates from GRACE[J]. Geophysical Research Letters, 2006, 33(11):L11502.
    King M A, Bingham R J, Moore R, et al. Lower satellite-gravimetry estimates of Antarctic sea-level contribution[J]. Nature, 2012, 491(7425):586-589.
    Matsuo K, Chao B F, Otsubo T, et al. Accelerated ice mass depletion revealed by low-degree gravity field from satellite laser ranging:Greenland, 1991-2011[J]. Geophysical Research Letters, 2013, 40(17):4662-4667.
    Chambers D P, Wahr J, Tamisiea M E, et al. Ocean mass from GRACE and glacial isostatic adjustment[J]. Journal of Geophysical Research, 2010, 115(B11):B11415.
    Geruo A, Wahr J, Zhong S J. Computations of the viscoelastic response of a 3-D compressible Earth to surface loading:an application to Glacial Isostatic Adjustment in Antarctica and Canada[J]. Geophysical Journal International, 2013, 192(2):557-572.
    Wahr J, Molenaar M, Bryan F. Time variability of the Earth's gravity field:Hydrological and oceanic effects and their possible detection using GRACE[J]. Journal of Geophysical Research:Solid Earth, 1998, 103(B12):30205-30229.
    Han D Z, Wahr J. The viscoelastic relaxation of a realistically stratified Earth, and a further analysis of postglacial rebound[J]. Geophysical Journal International, 1995, 120(2):287-311.
    Bettadpur S. Level-2 gravity field product user handbook, GRACE 327-734, CSR Publ. GR-03-01[R]. Texas:University of Texas at Austin, 2007:19.
    Swenson S, Chambers D, Wahr J. Estimating geocenter variations from a combination of GRACE and ocean model output[J]. Journal of Geophysical Research, 2008, 113(B8):B08410.
    Cheng M K, Tapley B D. Variations in the Earth's oblateness during the past 28 years[J]. Journal of Geophysical Research, 2004, 109(B9):B09402.
    Jekeli C. Alternative methods to smooth the Earth's gravity field, Rep. 327[R]. Columbus:Ohio State University, 1981.
    Swenson S C, Wahr J. Post-processing removal of correlated errors in GRACE data[J]. Geophysical Research Letters, 2006, 33(8):L08402.
    Ramillien G, Bouhours S, Lombard A, et al. Land water storage contribution to sea level from GRACE geoid data over 2003-2006[J]. Global and Planetary Change, 2008, 60(3/4):381-392.
    Llovel W, Becker M, Cazenave A, et al. Global land water storage change from GRACE over 2002-2009:inference on sea level[J]. Comptes Rendus Geoscience, 2010, 342(3):179-188.
    Riva R E M, Bamber J L, Lavallée D A, et al. Sea-level fingerprint of continental water and ice mass change from GRACE[J]. Geophysical Research Letters, 2010, 37(19):L19605.
    Cazenave A, Chen J L. Time-variable gravity from space and present-day mass redistribution in the Earth system[J]. Earth and Planetary Science Letters, 2010, 298(3/4):263-274.
    Lemke P, Ren J, Alley R B, et al. Observations:changes in snow, ice and frozen ground[M]//Solomon S, Qin D, Manning M, et al. Climate Change 2007:the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment report of the Intergovernmental Panel on Climate Change. Cambridge:Cambridge University Press, 2007.
    Ducet N, Le Traon P Y, Reverdin G. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2[J]. Journal of Geophysical Research, 2000, 105(C8):19477-19498.
    Ishii M, Kimoto M, Sakamoto K, et al. Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses[J]. Journal of Oceanography, 2006, 62(2):155-170.
    Paulson A, Zhong S J, Wahr J. Inference of mantle viscosity from GRACE and relative sea level data[J]. Geophysical Journal International, 2007, 171(2):497-508.
    Peltier W R. Closure of the budget of global sea level rise over the GRACE era:the importance and magnitudes of the required corrections for global glacial isostatic adjustment[J]. Quaternary Science Reviews, 2009, 28(17/18):1658-1674.
    Chambers D P, Wahr J, Tamisiea M E, et al. Reply to comment by W. R. Peltier et al. on "Ocean mass from GRACE and glacial isostatic adjustment"[J]. Journal of Geophysical Research, 2012, 117(B11):B11404.
    Peltier W R, Drummond R, Roy K. Comment on "Ocean mass from GRACE and glacial isostatic adjustment" by D. P. Chambers et al[J]. Journal of Geophysical Research, 2012, 117(B11):B11403.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (696) PDF downloads(285) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return