Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Li Ting, Ji Min, Jin Fengxiang, Liao Zhongyun, Sun Yong. Research on adaptive-step calculation model of marine fluid flow numerical integration[J]. Haiyang Xuebao, 2018, 40(3): 95-101. doi: 10.3969/j.issn.0253-4193.2018.03.009
Citation: Li Ting, Ji Min, Jin Fengxiang, Liao Zhongyun, Sun Yong. Research on adaptive-step calculation model of marine fluid flow numerical integration[J]. Haiyang Xuebao, 2018, 40(3): 95-101. doi: 10.3969/j.issn.0253-4193.2018.03.009

Research on adaptive-step calculation model of marine fluid flow numerical integration

doi: 10.3969/j.issn.0253-4193.2018.03.009
  • Received Date: 2017-04-10
  • For the issues that existed in the old streamline numerical integration procedure which used the fixed integrating-step, such as inaccurate calculation results and unnecessary calculations, literature 15 presented the adaptive-step based marine fluid flow streamline constructing algorithm (AMFCA). The adaptive-step integration model in AMFCA could use the local grid's flow direction and velocity at same time, and had the advantage of adjusting the integrating-step in two degrees of freedom. But the model also had several issues, such as the streamline tracking process interruption when the adjacent grids' flow direction changes rapidly, the calculation endless loop when the flow velocity is close to zero, and so on. In order to solve these problems, the paper gave a new adaptive-step integration optimization model. This new model kept all the advantages of the old model, and by limiting the integral step's lowest value, it resolved the front issues. In addition to this, through adjusted μ and δ's control ranges, the new model also made the applicability of integration step more widely,improved the computing efficiency, reduced the number of sampling data, and avoided the overlap and saw teeth of streamlines. Through many experiments and 3D simulating, it verified the practicability and feasibility of the new model.
  • loading
  • 韩敏, 张海超, 边茂松, 等. 流线增强型线性积分卷积流场可视化[J]. 系统仿真学报, 2016, 28(12):2933-2938. Han Min, Zhang Haichao, Bian Maosong, et al. FLow visualization baseed on enhanced streamline line integral convolution[J]. Journal of System Simulation, 2016, 28(12):2933-2938.
    Yu Hongfeng, Wang Chaoli, Shene C K, et al. Hierarchical streamline bundles[J]. Visualization & Computer Graphics IEEE Transactions on, 2012, 18(8):1353-1367.
    Yan Tinghua, Feng Chong. Research and implement for flow field based on streamline technique[J]. Information Technology and Informalization, 2008, 10(3):51-53.
    Turk G, Bank D. Image-guided streamline placement[C]//Conference on Computer Graphics & Interactive Techniques. 1996:453-460.
    Li Liya, Shen Hanwei. Image-based streamline generation and rendering[J]. IEEE Transactions on Visualization and Computer Graphics, 2007, 13(3):630-640.
    Mao X, Hatanaka Y, Higashida H, et al. Image-guided streamline placement on curvilinear grid surfaces[C]//Proceeding of the IEEE Conference on Visualization. Los Alaitos:IEEE Computer Society Press, 1998:135-142.
    Verma V, Kao D, Pang A. A flow-guided streamline seeding strategy[C]//Proceeding of the IEEE Conference on Visualization. Salt Lake City, Utah, USA:IEEE Computer Society Press, 2000:163-170.
    Ye X, Kao D, Pang A. Strategy for seeding 3D streamlines[C]//Proceeding of the IEEE Conference on Visualization. Los Alamitos:IEEE Computer Society Press, 2005:471-478.
    Buning P. Computer graphics and flow visualization in computational fluid dynamics[C]//Proceeding of Lecture Series Held in Rhode-saint-genese. Belgium:Von Karman Institute for Fluid Dynamics Press, 1989:1-10.
    任碧宁, 魏生民, 罗卫平. 三维CFD矢量场自适应流线耙并行计算[J]. 西安电子科技大学学报, 1999, 26(5):646-650. Ren Bining, Wei Minsheng, Luo Weiping. Parallelization of an adaptive step particle tracing method on PVM[J]. Journal of Xidian University, 1999, 26(5):646-650.
    李海生, 杨钦, 陈其明. 三维计算流体力学流场的流线构造[J]. 北京航空航天大学学报, 2003, 29(5):434-437. Li Haisheng, Yang Qin, Chen Qiming. Consructing streamlines in 3D CFD flow field[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(5):434-437.
    杨光, 成诗明. 基于四面体的三维流线构造[J]. 北京航空航天大学学报, 2010, 34(9):1061-1064. Yang Guang, Chen Shiming. Tetrahedron-based constructing 3d_streamlines in visualization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 34(9):1061-1064.
    孙波. 三维流场流线放置方法研究[D]. 北京:北京理工大学, 2011. Sun Bo. Streamlines placement for 3D flow fields[D]. Beijing:Beijing Institute of Technology, 2011.
    鲁大营, 朱登明, 王兆其. 三维流场的流线提取算法[J]. 计算机辅助设计与图形学学报, 2013, 25(5):666-673. Lu Daying, Zhu Dengming, Wang Zhaoqi. Streamline selection algorithm for three-dimensional flow fields[J]. Journal of Computer-Aided Design and Computer Graphics, 2013, 25(5):666-673.
    季民, 陈丽, 靳奉祥, 等. 自适应步长的海洋流线构造算法[J]. 武汉大学学报:信息科学版, 2014, 39(9):1052-1056. Ji Min, Chen Li, Jin Fengxiang, et al. Adaptive-step based marine fluid flow streamline constucting algorithm[J]. Geomatics and Information Scinece of Wuhan University, 2014, 39(9):1052-1056.
    纪鹏波. 基于i4Ocean2.0的海洋仿真与三维流场可视化应用研究[D]. 青岛:中国海洋大学, 2015. Ji Pengbo. The application research of marine simulation and 3D flow visualization based on i4Ocean2.0[D]. Qingdao:Ocean University of China, 2015.
    丁少荣, 吴迪, 汪国平. 一种流线放置方法[J]. 软件学报, 2012, 23(2):42-52. Ding Shaorong, Wu Di, Wang Guoping. A method of streamline placement[J]. Journal of Software, 2012, 23(2):42-52.
    Liu Z, Moorhead R, Groner J. An advanced evenly-spaced streamline placement algorithm[J]. IEEE Transactions on Visualization & Computer Graphics, 2006, 12(5):965.
    Lefer W, Jobard B, Leduc C. High-quality animation of 2D steady vector fields[J]. IEEE Transactions on Visualization and Computer Graphics, 2004, 10(1):2-14.
    Chen Y, Cohen J D, Krolik J H. Similarity-guided streamline placement with error evaluation[J]. IEEE Transactions on Visualization and Computer Graphics, 2007, 13(6):1448-1455.
    Mebarki A, Alliez P, Devillers O. Farthest point seeding for efficient placement of streamlines[C]//Proceeding of the IEEE Conference on Visualization. Los Alamitos:IEEE Computer Society Press, 2005:479-486.
    Tricoche X, Scheuermann G, Hagen H. Topology-based visualization of time-dependent 2D vector fields[C]//Proceeding of Data Visualizating 2001. Aire-la-Ville, Switzerland:Springer Vienna Press, 2001:117-126.
    Interrante V, Grosch C. Visualizing 3D Flow[J]. IEEE Computer Graphics and Applications, 1998, 18(4):49-53.
    Weinkauf T, Theisel H, Hege H, et al. Topological construction and visualization of heigher order 3D vector field[J]. Computer Graphics Forum, 2004, 23(3):469-478.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (900) PDF downloads(772) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return