Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Wang Jianjun, Tao Chunhui, Wang Huajun, Deng Xianming, Xiong Wei, Li Ze. Study of self-potential observation ways in the seafloor polymetallic sulfide deposits[J]. Haiyang Xuebao, 2018, 40(1): 57-67. doi: 10.3969/j.issn.0253-4193.2018.01.007
Citation: Wang Jianjun, Tao Chunhui, Wang Huajun, Deng Xianming, Xiong Wei, Li Ze. Study of self-potential observation ways in the seafloor polymetallic sulfide deposits[J]. Haiyang Xuebao, 2018, 40(1): 57-67. doi: 10.3969/j.issn.0253-4193.2018.01.007

Study of self-potential observation ways in the seafloor polymetallic sulfide deposits

doi: 10.3969/j.issn.0253-4193.2018.01.007
  • Received Date: 2017-04-04
  • Using the marine self-potential method could explore the position and size of the seafloor hydrothermal polymetallic sulfide ore body. In the practical marine investigation, we could use the horizontal and vertical measurements. Here we used the numerical simulation method to analyze the detection effection of these two measuring ways. The analysis result indicates that vertical measurements could get a bigger anomaly than horizontal measurements. And the lateral resolution of vertical measurements is higher than horizontal. While vertical observation system's electrode is more close to the seafloor and have bigger operating risk than horizontal measurements. We need choose applicable detection system and observation way according to actual requirements. In the actual detection, there will be an angle between the electrodes and the horizontal direction. It will lead to a change of anomalies. We need to notice it in the data processing and interpretation. It can provide us with some reference about the marine exploration of the seafloor polymetallic sulfide.
  • loading
  • Corry C E. Spontaneous polarization associated with porphyry sulfide mineralization[J]. Geophysics, 1985, 50(6):1020-1034.
    仇勇海. 金属矿自然电位的空间分布及其应用[J]. 物探与化探, 1985, 9(4):268-273. Qiu Yonghai. Spatial distribution of spontaneous potential of metallic oreboby and its application[J]. Geophysical and Geochemical Exploration, 1985, 9(4):268-273.
    熊威,陶春辉,邓显明. 电磁方法在海底多金属硫化物探测中的应用[J]. 海洋学研究, 2013, 31(2):59-64. Xiong Wei, Tao Chunhui, Deng Xianming. Application of electromagnetic methods in detection of seafloor polymetallic sulfides[J]. Journal of Marine Sciences, 2013, 31(2):59-64.
    Corwin R F. Offshore application of self-potential prospecting[D]. Berkeley:University of California, 1973.
    Corwin R F. Offshore use of the self-potential method[J]. Geophysical Prospecting, 1976, 24(1):79-90.
    Brewitt-Taylor C R. Self-potential prospecting in the deep oceans[J]. Geology, 1975, 3(9):541-542.
    Sudarikov S M, Roumiantsev A B. Structure of hydrothermal plumes at the Logatchev vent field, 14°45'N, Mid-Atlantic Ridge:evidence from geochemical and geophysical data[J]. Journal of Volcanology and Geothermal Research, 2000, 101(3):245-252.
    Lipton I. Mineral resource estimate Solwara 1 project Bismarck Sea Papua New Guinea for Nautilus Minerals Inc:Technical report[R]. Technical Report Canadian NI43-101 form, 2008.
    Uglov B D. Determination of the form of ore bodies of deep sulfides deposits to assess their resources potential[C]//Ores and Metals Meeting Abstracts(RUS). 2013.
    Tao C, Deng X, Wu G, et al. Transient electromagnetic and electric self-potential survey in the TAG hydrothermal field in MAR[C]//AGU Fall Meeting Abstracts. 2012.
    Heinson G, White A, Constable S, et al. Marine self potential exploration[J]. Exploration Geophysics, 1999, 30(2):1-4.
    Gramberg I S, Kaminsky V D, Kunin A E. New data on hydrothermal activity and sulphides mineralization at 12°40'-12°50' N obtained by deep-towed system "Rift"[J]. Dokladi Akademii Nauk, 1992, 323:865-867.
    袁桂琴, 熊盛青, 孟庆敏,等. 地球物理勘查技术与应用研究[J]. 地质学报, 2011, 85(11):1744-1805. Yuan Guiqin, Xiong Shengqing, Meng Qingmin, et al. Application research of geophysical prospecting techniques[J]. Acta Geologica Sinica, 2011, 85(11):1744-1805.
    Accerboni E, Mosetti F. A physical relationship among salinity, temperature and electrical conductivity of seawater[J]. Bol. Geof. Teor. Appl, 1967, 9:87-96.
    Becker K, Von Herzen R P, Francis T J G, et al. In situ electrical resistivity and bulk porosity of the oceanic crust Costa Rica Rift[J]. Nature, 1982, 300(5893):594-598.
    邵珂,陈建平,任梦依. 印度洋中脊多金属硫化物矿产资源定量预测与评价[J]. 海洋地质与第四纪地质, 2015, 35(5):125-133. Shao Ke, Chen Jianping, Ren Mengyi. Quantitative prediction and evaluation of polymetallic sulfide mineral deposits along the Central Indian Ocean Ridge[J]. Marine Geology & Quaternary Geology, 2015, 35(5):125-133.
    Drury M J, Hyndman R D. The electrical resistivity of oceanic basalts[J]. Journal of Geophysical Research:Solid Earth, 1979, 84(B9):4537-4545.
    Tao C H, Wu T, Jin X B, et al. Petrophysical characteristics of rocks and sulfides from the SWIR hydrothermal field[J]. Acta Oceanologica Sinica, 2013, 32(12):118-125.
    李金铭. 地电场与电法勘探[M]. 北京:地质出版社, 2005. Li Jinming. Geoelectric Field and Electrical Exploration[M]. Beijing:Geological Publishing House, 2005.
    王凯, 刘宽厚, 耿涛, 等. 德尔尼矿区和外围自然电场异常特征及其找矿意义[J]. 甘肃冶金, 2007, 29(6):25-28. Wang Kai, Li Kuanhou, Geng Tao, et al. Abnormity characteristics of SP method and significance of ore prospecting in Der'erny mining area and its periphery[J]. Gansu Metallurgy, 2007, 29(6):25-28.
    Goldie M. Self-potentials associated with the Yanacocha high-sulfidation gold deposit in Peru[J]. Geophysics, 2002, 67(3):684-689.
    Sato M, Mooney H M. The electrochemical mechanism of sulfide self potentials[J]. Geophysics, 1960, 25(1):226-249.
    Jones, E. J W. Marine Geophysics[M]. Wiley, 1999.
    薛琴访. 场论[M]. 北京:地质出版社, 1978. Xue Qinfang. Field Theories[M]. Beijing:Geological Publishing House, 1978.
    范业活, 关继腾, 王克文. 离子导电岩石自然电位特性的机理研究[J]. 物探与化探, 2005, 29(3):239-242. Fan Yehuo, Guan Jiteng, Wang Kewen. The mechanism of spontaneous potential characteristics of rocks with ionic conductivity[J]. Geophysical and Geochemical Exploration, 2005, 29(3):239-242.
    Jansen J, Billington N, Snider F, et al. Marine SP surveys for dam seepage investigations:Evaluation of array geometries through modeling and field trials[J]. Journal of Environmental and Engineering Geophysics, 1996, 1(1):37-45.
    何继善. 海洋电磁法原理[M]. 北京:高等教育出版社, 2012. He Jishan. Marine Electromagnetic Principle[M]. Beijing:Higher Education Press, 2012.
    Heinson G, White A, Robinson D, et al. Marine self-potential gradient exploration of the continental margin[J]. Geophysics, 2005, 70(5):109-118.
    Sudarikov S M, Roumiantsev A B. Structure of hydrothermal plumes at the Logatchev vent field, 14°45'N, Mid-Atlantic Ridge:evidence from geochemical and geophysical data[J]. Journal of Volcanology and Geothermal Research, 2000, 101(3):245-252.
    张先健. 深海拖曳式自然电位法技术研究[D]. 杭州:杭州电子科技大学, 2011. Zhang Xianjian. Deep sea drap type self-potential method technology research[D]. Hangzhou:Hangzhou Dianzi University, 2011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1024) PDF downloads(842) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return