Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Li Qianqian, Yang Fanlin, Zhang Kai. Multiple source localization using Bayesian theory in an uncertain environment[J]. Haiyang Xuebao, 2018, 40(1): 39-46. doi: 10.3969/j.issn.0253-4193.2018.01.005
Citation: Li Qianqian, Yang Fanlin, Zhang Kai. Multiple source localization using Bayesian theory in an uncertain environment[J]. Haiyang Xuebao, 2018, 40(1): 39-46. doi: 10.3969/j.issn.0253-4193.2018.01.005

Multiple source localization using Bayesian theory in an uncertain environment

doi: 10.3969/j.issn.0253-4193.2018.01.005
  • Received Date: 2017-08-10
  • Environmental uncertainty often represents the limiting factor in matched-field localization. Within a Bayesian framework, environmental focalization has been widely applied to solve the augmented localization problem, in which the environmental parameters, source ranges and depths are considered to be unknown variables. However, including environmental parameters in multiple-source localization greatly increases the complexity and computational demands of the inverse problem. It has to estimate lots of unknown parameters by limited observation information. In the approach, the closed-form maximum-likelihood expressions for source strengths and noise variance at each frequency allow these parameters to be sampled implicitly, substantially reducing the dimensionality and difficulty of the inversion. Genetic algorithms are used for the optimization and all the samples of the parameter space are used to estimate the a posteriori probabilities of the model parameters. In order to compensate for the precocious disadvantage of genetic algorithm, the likelihood function is expressed as the empirical exponent relation of the cost function. This method integrates the a posterior probability density over environmental parameters to obtain a sequence of marginal probability distributions over source range and depth, from which the most-probable source location and localization uncertainties can be extracted. Examples are presented for multi-frequency localization of two sources in an uncertain shallow water environment, and a Monte Carlo performance evaluation study is carried out.
  • loading
  • Bucker H P. Use of calculated sound fields and matched-field detection to locate sound sources in shallow water[J]. Journal of Acoustical Society of America, 1976, 59(2):368-373.
    秦继兴, Katsnelson Boris, 李整林, 等. 浅海中孤立子内波引起的声能量起伏[J]. 声学学报, 2016, 41(2):3-11. Qin Jixing, Katsnelson B, Li Zhenglin, et al. Intensity fluctuations due to the motion of internal solitons in shallow water[J]. Acta Acustica, 2016, 41(2):3-11.
    胡治国, 李整林, 张仁和, 等. 深海海底斜坡环境下的声传播[J]. 物理学报, 2016, 65(1):014303. Hu Zhiguo, Li Zhenglin, Zhang Renhe, et al. Sound propagation in deep water with a sloping bottom[J]. Acta Physica Sinica, 2016, 65(1):014303.
    Vaccaro R J, Chhetri A, Harrison B F. Matrix filter design for passive sonar interference suppression[J]. Journal of Acoustical Society of America, 2004, 115(6):3010-3020.
    莫亚枭, 朴胜春, 张海刚, 等. 水平变化波导中的简正波耦合与能量转移[J]. 物理学报, 2014, 63(21):214302. Mo Yaxiao, Pao Shengchun, Zhang Haigang, et al. Mode coupling and energy transfer in a range-dependent waveguide[J]. Acta Physica Sinica, 2014, 63(21):214302.
    Dosso S E, Wilmut M J. Bayesian multiple-source localization in an uncertain ocean environment[J]. Journal of Acoustical Society of America, 2011, 129(6):3577-3589.
    Song H C, Rosny J, Kuperman W A. Improvement in matched field processing using the CLEAN algorithm[J]. Journal of Acoustical Society of America, 2003, 113(3):1379-1386.
    Michalopoulou Z H. Multiple source localization using a maximum a posteriori Gibbs sampling approach[J]. Journal of Acoustical Society of America, 2006, 120:2627-2634
    鄢社峰, 马远良. 匹配场噪声抑制:广义空域滤波方法[J]. 科学通报, 2004, 49(18):1909-1912. Yan Shefeng, Ma Yuanliang. Matching field noise suppression:generalized spatial filtering method[J]. Chinese Science Bulletin, 2004, 49(18):1909-1912.
    李倩倩. 不确知海洋环境下的贝叶斯匹配场定位研究[D]. 北京:中国科学院大学, 2013. Li Qianqian. Source localization via Bayesian matched-field processing in an uncertain ocean environment[D]. Beijing:University of Chinese Academy of Sciences, 2013.
    李倩倩, 阳凡林, 张凯, 等. 不确定海洋环境中基于贝叶斯理论的声源运动参数估计方法[J]. 物理学报, 2016, 65(16):164304. Li Qianqian, Yang Fanlin, Zhang Kai, et al. Moving source parameter estimation in an uncertain environment[J]. Acta Physica Sinica, 2016, 65(16):164304.
    Jensen F B, Ferla F C. SNAP:The SACLANTCEN normal-mode acoustic propagation model[S]. La Spezia, Italy:Saclantcen, 1979:1-99.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1157) PDF downloads(911) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return