Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Wu Junjie, Yuan Zineng, Xiang Rong, Zhang Hailong, Xiao Xiaotong, Zhao Meixun. Biomarker records of temporal and spatial pattern of phytoplankton community structure in the Yellow Sea during the Holocene[J]. Haiyang Xuebao, 2017, 39(10): 101-110. doi: 10.3969/j.issn.0253-4193.2017.10.009
Citation: Wu Junjie, Yuan Zineng, Xiang Rong, Zhang Hailong, Xiao Xiaotong, Zhao Meixun. Biomarker records of temporal and spatial pattern of phytoplankton community structure in the Yellow Sea during the Holocene[J]. Haiyang Xuebao, 2017, 39(10): 101-110. doi: 10.3969/j.issn.0253-4193.2017.10.009

Biomarker records of temporal and spatial pattern of phytoplankton community structure in the Yellow Sea during the Holocene

doi: 10.3969/j.issn.0253-4193.2017.10.009
  • Received Date: 2017-01-16
  • Rev Recd Date: 2017-03-02
  • For lack of temporal and spatial pattern of phytoplankton community structure in the Yellow Sea during the Holocene, biomarker records in core C02 and N05 were used to reconstruct the phytoplankton community structures, combined with published biomarker records. In the early Holocene, the relative ratios of alkenones (A/∑PB) and brassicasterol (B/∑PB) were low,while the relative ratio of dinosterol (D/∑PB) was high. High value of TMBR' index indicates that the phytoplankton community structure was controlled by terrestrial nutrients during this period. In the mid Holocene, A/∑PB increased, while B/∑PB and D/∑PB decreased. This is attributed to the Yellow Sea Warm Current intrusion with high temperature and high salinity. A/∑PB increased significantly at core sites ZY3, ZY2, ZY1 and YE-2 (35.5°N zone), while slightly at core sites C02 and N05. The Yellow Sea Warm Current flowed through the 35.5°N zone, controlling the phytoplankton community structure in the zone. However, the phytoplankton community structure in site C02 and N05 was still controlled by terrestrial nutrients. From the early Holocene to the mid Holocene, maximum of B/∑PB (D/∑PB) switched between sites C02 and N05 due to different controlling factors for these two locations, likely related to variations of the Yellow Sea Warm Current axis and the transportation of terrestrial matter. In the late Holocene, A/∑PB continued to increase, while B/∑PB and D/∑PB decreased. This might result from the strengthened circulation system induced by strengthened East Asian Winter Monsoon. Ratio between dinosterol and brassicasterol (D/B) increased in the late Holocene, due to the strengthened East Asian Winter Monsoon, which brought more nitrogen from atmosphere to ocean thus triggering dinoflagellates growth.
  • loading
  • Sigman D M, Boyle E A. Glacial/interglacial variations in atmospheric carbon dioxide[J]. Nature, 2000, 407(6806):859-869.
    Liu J P, Milliman J D, Gao Shu, et al. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea[J]. Marine Geology, 2004, 209(1/4):45-67.
    Fang Li, Xiang Rong, Zhao Meixun, et al. Phase evolution of Holocene paleoenvironmental changes in the southern Yellow Sea:Benthic foraminiferal evidence from core CO2[J]. Journal of Ocean University of China, 2013, 12(4):629-638.
    Zhao Xiaochen, Tao Shuqin, Zhang Rongping, et al. Biomarker records of phytoplankton productivity and community structure changes in the Central Yellow Sea mud area during the mid-late Holocene[J]. Journal of Ocean University of China, 2013, 12(4):639-646.
    Xing Lei, Zhao Meixun, Zhang Hailong, et al. Biomarker evidence for paleoenvironmental changes in the southern Yellow Sea over the last 8200 years[J]. Chinese Journal of Oceanology and Limnology, 2012, 30(1):1-11.
    Wu Peng, Xiao Xiaotong, Tao Shuqin, et al. Biomarker evidence for changes in terrestrial organic matter input into the Yellow Sea mud area during the Holocene[J]. Science China Earth Sciences, 2016, 59(6):1216-1224.
    Brassell S C, Eglinton G, Marlowe I T, et al. Molecular stratigraphy:a new tool for climatic assessment[J]. Nature, 1986, 320(6058):129-133.
    Volkman J K, Barrerr S M, Blackburn S I, et al. Alkenones in Gephyrocapsa oceanica:implications for studies of paleoclimate[J]. Geochimica et Cosmochimica Acta, 1995, 59(3):513-520.
    Boon J J, Rijpstra W I C, de Lange F, et al. Black Sea sterol-a molecular fossil for dinoflagellate blooms[J]. Nature, 1979, 277(5692):125-127.
    Volkman J K, Barrett S M, Blackburn S I, et al. Microalgal biomarkers:a review of recent research developments[J]. Organic Geochemistry, 1998, 29(5/7):1163-1179.
    Brand L E. Genetic variability and spatial patterns of genetic differentiation in the reproductive rates of the marine coccolithophores Emiliania huxleyi and Gephyrocapsa oceanica[J]. Limnology and Oceanography, 1982, 27(2):236-245.
    Rees A P, Woodward E M S, Robinson C, et al. Size-fractionated nitrogen uptake and carbon fixation during a developing coccolithophore bloom in the North Sea during June 1999[J]. Deep-Sea Research Part Ⅱ:Topical Studies in Oceanography, 2002, 49(15):2905-2927.
    Falkowski P G, Oliver M J. Mix and match:how climate selects phytoplankton[J]. Nature Reviews Microbiology, 2007, 5(10):813-819.
    Jouenne F, Lefebvre S, Véron B, et al. Phytoplankton community structure and primary production in small intertidal estuarine-bay ecosystem (eastern English Channel, France)[J]. Marine Biology, 2007, 151(3):805-825.
    Egge J K, Aksnes D L. Silicate as regulating nutrient in phytoplankton competition[J]. Marine Ecology Progress Series, 1992, 83(2/3):281-289.
    Egge J K. Are diatoms poor competitors at low phosphate concentrations[J]. Journal of Marine Systems, 1998, 16(3/4):191-198.
    Wu Peng, Bi Rong, Duan Shanshan, et al. Spatiotemporal variations of phytoplankton in the East China Sea and the Yellow Sea revealed by lipid biomarkers[J]. Journal of Geophysical Research:Biogeosciences, 2016, 121(1):109-125.
    丁玲, 邢磊, 赵美训, 等. 东海陆架区悬浮颗粒物中浮游植物生物标志物比例及种群结构意义[J]. 中国海洋大学学报:自然科学版, 2007, 37(S2):143-148. Ding Ling, Xing Lei, Zhao Meixun, et al. Phytoplankton biomarker ratios in suspended particles from the continental shelf of the East China Sea and their implications in community structure reconstruction[J]. Periodical of Ocean University of China:Science Edition, 2007, 37(S2):143-148.
    张海龙, 邢磊, 赵美训, 等. 东海和黄海表层沉积物生物标志物的分布特征及古生态重建潜力[J]. 中国海洋大学学报:自然科学版, 2008, 38(6):992-996. Zhang Hailong, Xing Lei, Zhao Meixun, et al. Distribution of biomarkers in surface sediment of the East China and Yellow Seas and its potential for paleoecology reconstruction[J]. Periodical of Ocean University of China:Science Edition, 2008, 38(6):992-996.
    王星辰, 邢磊, 张海龙, 等. 北黄海-渤海表层沉积物中浮游植物生物标志物的分布特征及指示意义[J]. 中国海洋大学学报, 2014, 44(5):69-73, 78. Wang Xingchen, Xing Lei, Zhang Hailong, et al. Distribution of phytoplankton biomarkers in surface sediments from the north Yellow Sea and the Bohai Sea and its implication[J]. Periodical of Ocean University of China, 2014, 44(5):69-73, 78.
    Hu Bangqi, Yang Zuosheng, Zhao Meixun, et al. Grain size records reveal variability of the East Asian Winter Monsoon since the Middle Holocene in the Central Yellow Sea mud area, China[J]. Science China Earth Sciences, 2012, 55(10):1656-1668.
    Xiang Rong, Yang Zuosheng, Saito Y, et al. Paleoenvironmental changes during the last 8400 years in the southern Yellow Sea:benthic foraminiferal and stable isotopic evidence[J]. Marine Micropaleontology, 2008, 67(1/2):104-119.
    Yuan Zineng, Xing Lei, Li Li, et al. Biomarker records of phytoplankton productivity and community structure changes during the last 14000 years in the mud area southwest off Cheju Island, East China Sea[J]. Journal of Ocean University of China, 2013, 12〨???????戶爱?嬮??嵲 ̄?愲爴杝愠汚敨晡?删???楸晵敮?映潄物浮獧?潌晩?灧栬礠瑘潩灮汧愠湌步瑩漬渠?慴猠?獬甮爠癍楡癪慯汲?慭汩瑤攭牬湡慴瑥椠癈敯獬?楣湥?慥渠?畯湯獬瑩慮执氠敩?攠湴癨楥爠潅湡浳整渠瑃孨?嵮??体捥敡愠湲潥汶潥条楬捥慤??捹琠慡??????????????????て???戠牴?孭??嵲?奴慵湲来?卲桥楣汯楲湤杛???椠湊杯?婲桮潡湬朠汯楦???摥癡慮渠捕敮?牶敥瑲牳敩慴瑹?桯楦猠瑃潨物祮?漬映′琰栱攴??愱猳琨??猺椹愳渵?猹甴洰洮攼牢?派潛渲猵潝漠滝?爪愬椠溋暢愞氬氠?拥斉氬琠?漮瘠敗狄?溉濯物琸棏敃爠滄‐?桩榐渆憐?摊畝爮椠渰杦?琘栬攠′氰愰猷琬?琱眴漨?朩氺愱挹椷愭氲?椳渮琠敌牡杮氠慘捩楡慮汨?据祧挬氠敗獡孮?崠???慧牸瑩桡?愠湌摩?偒汩慨湵敩琬愠牥祴?卡捬椮攠湍捡敪??攠瑥瑬敥牭獥????っ??????????????????ぶ??扡牮?孥??嵮?奬慹湳捩桳攠癩慮????丠潳睥慤捩穭祥歮?乳?副???楨湥朠牓慯浵????敥瑬?慯汷???湡晛汊畝攮渠捅敡?潴晨?瑓档敩?楮湣瑥攠牆瑲牯潮灴楩捥慲汳?挠漲渰瘰攷爬朠攱渴挨攴?稺漱渹攷?漲渰″琮格敢??慛猲琶??玮楓憆測?洘漠湔猬漠澁渹嬬?嵉??乗懄瑷畨牂斉??木?〨??‖?????????????????戰爨?嬠??崱??愠猳栱欨椵温?嘸?中?″倮愠牒歵?匠?啩???桩潮楧???卩??敃瑨?慡汮??乡楮琬爠潌杩敡湮?戠畄摡杮攬琠獥?映潡牬?琠桄敩?剴敲灩畢扵汴楩捯?漠景??潣牡敬慣?慲湥摯?瑳栠敮?奮敮汯汦潯睳?卩敬慳?物敮朠楴潨湥嬠?嵵???楣潥朠敳潥捤桩敭浥楮獴瑳爠祯???とづ㈠?????????????は???扥牡?孊??崠?婡桲慩湮来??楥湯杬???椠甦??極湡杴略慲湮条??传扇獥敯牬癯慧瑹椬漠渲猰?漱測?渳由琨爵椩攺游琹?改氳攮洼敢湲琾獛′愷湝搠?獩畭氠灄栬愠瑐敡?楫渠?愠瑋洬漠獓灨桩敮爠楉挠?眮攠瑐?摬敥灯潥獮楶瑩楲潯湮獭?潮癴敡牬?瑣桨敡?湧潥牳琠桯睦攠獴瑨?倠慙捥楬晬楯捷?捓潥慡猠瑤慵汲?潮捧攠慴湨獥?奌敡汴汥漠睑?卡整慥孲?嵡???慊牝椮渠敇??栭敍浡楲獩瑮牥礠???????????代??ㄠ????????戹爭?嬹??崼?婲栾慛渲朸??畋潩獭攠湊??娬栠態湥杮??楴湴朠???椮甠?卡畬浥敯楥???桲慯牮慭捥瑮整牡楬稠慣瑨楡潮湧?潳映?湳畳瑯牣楩敡湴瑥獤?楷湩?瑨栠整?慥琠浈潯獬灯档敥牮楥挠?睡敲瑩?慥渠摴?摡牮祳?摲敥灳潳獩楯瑮椬漠湙?潬扬獯敷爠癓敥摡?愨瑈?瑡桮敧?瑡睥漩?浊潝渮椠瑍潡牲楩湮来?獍楩瑣敲獯?潡癬敥牯?奴敯汬汯潧睹?匠攱愹?愸測搠″?愨猱琩??栱椭游愹?匼敢慲嬾?崲???潋畩牭渠慊氠?漬映??瑣浥潲獡瀠桍攮爠楂捥??桨敩浣椠獦瑯牲祡???どて???????????????vironmental changes in the Yellow Sea (Hwanghae) during the last 15,000 years[J]. Quaternary Science Reviews, 2000, 19(11):1067-1085.
    Wang Jiaze, Li Anchun, Xu Kehui, et al. Clay mineral and grain size studies of sediment provenances and paleoenvironment evolution in the middle Okinawa Trough since 17 ka[J]. Marine Geology, 2015, 366:49-61.
    Hu Bangqi, Yang Zuosheng, Qiao Shuqing, et al. Holocene shifts in riverine fine-grained sediment supply to the East China Sea Distal Mud in response to climate change[J]. The Holocene, 2014, 24(10):1-16.
    Lin Xiaopei, Yang Jiayan, Guo Jingsong, et al. An asymmetric upwind flow, Yellow Sea Warm Current:1. New observations in the western Yellow Sea[J]. Journal of Geophysical Research, 2011, 116(4),28-33.
    Anderson N J. Miniview:diatoms, temperature and climatic change[J]. European Journal of Phycology, 2000, 35(4):3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1025) PDF downloads(626) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return