Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Liu Bin, Liu Shengxuan. Gas bubble plumes observed at north slope of South China Sea from multi-beam water column data[J]. Haiyang Xuebao, 2017, 39(9): 83-89. doi: 10.3969/j.issn.0253-4193.2017.09.008
Citation: Liu Bin, Liu Shengxuan. Gas bubble plumes observed at north slope of South China Sea from multi-beam water column data[J]. Haiyang Xuebao, 2017, 39(9): 83-89. doi: 10.3969/j.issn.0253-4193.2017.09.008

Gas bubble plumes observed at north slope of South China Sea from multi-beam water column data

doi: 10.3969/j.issn.0253-4193.2017.09.008
  • Received Date: 2016-12-08
  • Rev Recd Date: 2017-02-08
  • Methane emission from seabed is a wide phenomenon around the world. Gas bubble plumes were observed in the Multi-Beam(MB) water column echo image with the newly (2016) acquired data in the north slope of South China Sea. Gas bubbles manifest themselves as flares on the MB image, and have the diameter of about 30 to 50 m. Plumes emanating from the~1 380 m depth seabed to the~650 m depth, resulting heights of >700 m. On the sub-bottom profile passing through the plume, we found the acoustic blanking zone which may indicate the gas migration pathway, but no clear anomalies were observed in the water column. This may be explained by the low resolution of the sub-bottom profiler image or the intermittence of the gas seepage. Lacking of multi-channel seismic and geochemistry data, we cannot further infer the formation mechanism of the gas plumes. The discovery of gas bubble plumes in the north slope of south china may improve our understanding of the methane seepage on the passive continental marginal, and the formation and dissociation of gas hydrates.
  • loading
  • Judd A G. The global importance and context of methane escape from the Seabed[J]. Geo-Marine Letters, 2003, 23(3/4):147-154.
    Carpenter G. Coincident sediment slump/clathrate complexs on the U.S. Atlantic continental slope[J]. Geo-Marine Letters, 1981, 1(1):29-32.
    Kvenvolden K A. Gas hydrates-geological perspective and global change[J]. Reviews of Geophysics, 1993, 31(2):173-187.
    Archer D, Buffett B, Brovkin V. Ocean methane hydrates as a slow tipping point in the global carbon cycle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(49):596-601.
    Judd A G, Hovland M. Seabed Fluid Flow[M]. Cambridge:Cambridge University Press, 2003:475.
    Bangs N L B, Hornbach M J, Berndt C. The mechanics of intermittent methane venting at South Hydrate Ridge inferred from 4D seismic surveying[J]. Earth & Planetary Science Letters, 2011, 310(1):105-112.
    Westbrook G K, Thatcher K E, Rohling E J,et al. Escape of methane gas from the seabed along the West Spisbergen continental margin[J]. Geophysical Research Letters, 2009, 36(15):139-156.
    Thatcher K E, Westbrook G K, Sarkar S, et al. Methane release from warming-induced hydrate dissociation in the west Svalbard continental margin:Timing, rates, and geological control[J]. Journal of Geophysical Research:Solid Earth, 2013, 118(1):22-38.
    Berndt C, Feseker T, Treude T, et al. Temporal constraints on hydrate-controlled methane seepage off Svalbard[J]. Science, 2014, 343(6168):284-287.
    Sauter E J, Muyakshin S I, Charlou J L, et al. Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles[J]. Earth and Planetary Science Letters, 2006, 243(3):354-365.
    Greinert J, Artemov Y, Egorov V, et al. 1300 m-high rising bubbles from mud volcanoes at 2080 m in the Black Sea:Hydroacoustic characteristics and temporal variability[J]. Earth and Planetary Science Letters, 2006, 244(1):1-15.
    Heeschean K U, Tréhu A M, Collier R W, et al. Distribution and height of methane bubble plumes on the Cascadia Margin characterized by acoustic imaging[J]. Geophysical Research Letters, 2003, 30(12):1643.
    栾锡武, 刘鸿, 岳保静, 等. 海底冷泉在旁扫声呐图像上的识别[J]. 现代地质, 2010, 24(3):474-480. Luan Xiwu, Liu Hong, Yue Baojing, et al. Characteristics of cold seepage on side-scan sonar sonogram[J]. Geoscience, 2010, 24(3):474-480.
    Matsumoto R. Methane plumes over a marine gas hydrate system in the eastern margin of Japan sea:A possible mechanism for transportation of subsurface methane to shallow waters[C]//5th International Conference on Gas hydrates 2005(ICGH) 2005. New York:Curran Associates Inc.,2009:1051.
    Merewether R, Olsso M S, Lonsdale P, et al. Acoustically detected hydrocarbon plumes rising from 2-km depths in Guaymas Basin, Gulf of California[J]. Journal of Geophysical Research, 1985, 90(B4):3075-3085.
    Brothers L L, Dover C L, German C R, et al. Evidence for extensive methane venting on the southeastern U.S. Atlantic margin[J]. Geology, 2013, 41(7):807-810.
    Römer M,Torres M,Kasten S, et al. First evidence of widespread active methane seepage in the southern Ocean, off the sub-Antarctic island of south Geogria[J]. Earth and Planetary Science Letters, 2014, 403:166-177.
    Li Lun, Lei Xinghua, Zhang Xin. Gas hydrate and associated free gas in the Dongsha Area of northern South China Sea[J]. Marine and Petroleum Geology, 2013(39):92-101.
    Yang S, Zhang G, Zhang M, et al. A complex gas hydrate system in the Dongsha area, South China Sea:result from drilling expedition GMGS2[C]//Proceedings of the 8th International Conference on Gas hydrate. Beijing, China, 2014.
    Zhang Guangxue, Yang Shengxiong, Zhang Ming, et al. GMGS2 expedition investigates rich and complex gas hydrate environment in the South China Sea[J]. Fire in the Ice, 2014, 14(1):1-5.
    拜阳, 宋海斌, 关永贤, 等. 利用反射地震和多波束资料研究南海西北部麻坑的结构特征与成因[J]. 地球物理学报, 2014, 57(7):2208-2222. Bai Yang, Song Haibin, Guan Yongxian, et al. Structural characteristics and genesis of pockmarks in the northwest of the South China Sea derived from reflective seismic and multi-beam data[J]. Chinese Journal of Geophysics, 2014, 57(7):2208-2222.
    黄永样, Suess E, 吴能友. 南海北部陆坡甲烷和天然气水合物地质:中德合作SO 177航次成果专报[M]. 北京:地质出版社, 2008. Huang Yongyang, Suess E, Wu Nengyou. Methan and gas hydrate geology of the Northern South China Sea, Sino-German Cooperative SO-177 Cruise Report[M]. Beijing:Geological Publishing House, 2008.
    陈多福,李绪宣,夏斌. 南海琼东南盆地天然气水合物稳定域分布特征及资源预测[J].地球物理学报, 2004, 47(3):483-489. Chen Duofu, Li Xuxuan, Xia Bin. Distribution of gas hydrate stable zones and resource prediction in the Qiongdongnan Basin of the South China Sea[J]. Chinese Journal of Geophysics, 2004, 47(3):483-489.
    陈多福, 黄永样, 冯东, 等.南海北部冷泉碳酸盐岩和石化微生物细菌及地质意义[J]. 矿物岩石地球化学通报, 2005, 24(3):185-189. Chen Duofu, Huang Yongyang, Feng Dong, et al. Seep carbonate and preserved bacteria fossils in the northern of the South China Sea and their geological implications[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2005, 24(3):185-189.
    Borowski W S, Paull C K, Ussler W. Global and local variation of interstitial sulfate gradients in deep-water, continental margin sediments:sensitivity to underlying methane and gas hydrate[J]. Marine Geology, 1999, 159(1-4):131-154.
    Gorman A R, Gorman W S, Holbrook M J, et al. Migration of methane gas through the hydrate stability zone in a low-flux hydrate province[J]. Geology, 2002, 30(4):327-330.
    Ruppel C G, Dicken D G, Castellini D G, et al. Heat and salt inhibition of gas hydrate in the northern Gulf of Mexico[J]. Geophysical Research Letter, 2005, 32(4):L04625.
    Leifer I, MacDonald I. Dynamics of the gas flux from shallow gas hydrate deposits:interaction between oily hydrate bubbles and the oceanic environment[J]. Earth Planetary Science Letter, 2003, 210(3):411-424.
    Rehder G, Brewer P W, Peltzer E T, et al. Enhanced lifetime of methane bubble streams within the deep ocean[J]. Geophysical Research Letter, 2002, 29(15):21-24.
    Sauter E J, Muyakshin S I, Charlou J L, et al. Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate coated methane bubbles[J]. Earth & Planetary Science Letters, 2006, 243(3):354-365.
    Jin Chunshuang, Wang Jiyang. A preliminary study of the gas hydrate stability zone in the South China Sea[J]. Acta Geologica Sinica, 2002, 76(4):423-428.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1022) PDF downloads(734) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return