Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Chen Jiabing, Wu Ziyin, Zhao Dineng, Zhou Jieqiong, Li Shoujun, Shang Jihong. Back propagation neural network classification of sediment seabed acoustic sonar images based on particle swarm optimization algorithms[J]. Haiyang Xuebao, 2017, 39(9): 51-57. doi: 10.3969/j.issn.0253-4193.2017.09.005
Citation: Chen Jiabing, Wu Ziyin, Zhao Dineng, Zhou Jieqiong, Li Shoujun, Shang Jihong. Back propagation neural network classification of sediment seabed acoustic sonar images based on particle swarm optimization algorithms[J]. Haiyang Xuebao, 2017, 39(9): 51-57. doi: 10.3969/j.issn.0253-4193.2017.09.005

Back propagation neural network classification of sediment seabed acoustic sonar images based on particle swarm optimization algorithms

doi: 10.3969/j.issn.0253-4193.2017.09.005
  • Received Date: 2016-10-15
  • By combining Particle Swarm Optimization (PSO) with BP neural network, the initial weights and thresholds of BP neural network classification are optimized by utilizing PSO with strong robustness and global searching ability. Extracting six main feature vectors of sandy, rocks and mud in the seabed sonar images based on the data of side scan sonar in the Zhujiang Estuary Delta, using the PSO-BP method to classify seabed sediment. The experiment shows that the accuracy of the sediments classification is more than 90%, higher than the accuracy about 70% which using BP neural network only. It proves that the PSO-BP method can be effectively applied to the identification and classification of sediment seabed.
  • loading
  • Leblanc L R, Mayer L, Rufino M, et al. Marine sediment classification using the chirp sonar[J]. Journal of the Acoustical Society of America, 1992, 91(1):107-115.
    Alexandrou D, Pantzartzis D. Seafloor classification with neural networks[J]. Oceans, 1990, 99(3):18-23.
    Chakraborty B, Kaustubha R, Hegde A, et al. Acoustic seafloor sediment classification using self-organizing feature maps[J]. IEEE Transactions on Geoscience & Remote Sensing, 2002, 39(12):2722-2725.
    Chakraborty B, Kodagali V, Baracho J. Sea-floor classification using multibeam echo-sounding angular backscatter data:a real-time approach employing hybrid neural network architecture[J]. IEEE Journal of Oceanic Engineering, 2003, 28(1):121-128.
    Marsh I, Brown C. Neural network classification of multibeam backscatter and bathymetry data from Stanton Bank (Area IV)[J]. Applied Acoustics, 2009, 70(10):1269-1276.
    阳凡林, 刘经南, 赵建虎,等. 基于遗传算法的BP网络实现海底底质分类[J]. 测绘科学, 2006, 31(2):111-114. Yang Fanlin, Liu Jingnan, Zhao Jianhu, et al. Seabed classification using BP neural network basd on GA[J]. Science of Surveying and Mapping, 2006, 31(2):111-114.
    唐秋华, 刘保华, 陈永奇, 等. 基于改进BP神经网络的海底底质分类[J]. 海洋测绘, 2009, 29(5):40-43. Tang Qiuhua, Liu Baohua, Chen Yongqi, et al. Seabed classification with improved BP neural network[J]. Hydrographic Surveying and Charting, 2009, 29(5):40-43.
    唐秋华, 刘保华, 陈永奇,等. 结合遗传算法的LVQ神经网络在声学底质分类中的应用[J]. 地球物理学报, 2007, 50(1):313-319. Tang Qiuhua, Liu Baohua, Chen Yongqi, et al. Application of LVQ neural network combined with the genetic algorithm in acoustic seafloor classification[J]. Chinese Journal of Geophysics, 2007, 50(1):313-319.
    唐秋华, 刘保华, 陈永奇,等. 基于自组织神经网络的声学底质分类研究[J]. 声学技术, 2007, 26(3):380-384. Tang Qiuhua, Liu Baohua, Chen Yongqi, et al. Acoustic seafloor classification using selforganizing map neural network[J]. Technical Acoustics, 2007, 26(3):380-384.
    Zhou Xinghua, Chen Yongqi. Seafloor classification of multibeam sonar data using neural network approach[J]. Marine Geodesy, 2005, 28(2):201-206.
    郭军, 马金凤. 基于K-L变换的自组织竞争神经网络在海底底质分类中的应用[J]. 测绘工程, 2013, 22(1):51-54. Guo Jun, Ma Jinfeng. Self-organization competition neural network based on K-L transform in seafloor classification[J]. Engineering of Surveying and Mapping, 2013, 22(1):51-54
    郭军, 马金凤. 基于粒子群优化算法的SVM神经网络在海底底质分类中的应用[J]. 测绘与空间地理信息, 2012, 35(12):66-68. Guo Jun, Ma Jinfeng. Support vector machine neural network based on particle swarm optimization in seafloor classification[J]. Geomatics &Spatial Information Technology, 2012, 35(12):66-68.
    郭军. 基于主成分分析的自组织竞争神经网络实现海底底质分类[M]//中国地球物理(2012). 北京:中国科学技术大学出版社, 2012. Guo Jun. Self-organization competition neural network based on principle component analysis in seafloor classification[M]//The Chinese Geophysics(2012). Beijing:University of Science and Technology of China Press, 2012.
    贺清碧. BP神经网络及应用研究[D]. 重庆:重庆交通大学, 2004. He Qingbi. BP neural network and application research[D]. Chongqing:Chongqing Jiaotong University, 2004.
    Kennedy J, Eberhart R C. Particle swarm optlmization[C]//Proceeding of IEEE International Conference on Neural Networks,1995,(4):1942-1948.
    范娜, 云庆夏. 粒子群优化算法及其应用[J]. 信息技术, 2006, 30(1):53-56. Fan Na, Yun Qingxia. Particle swarm optimization algorithms and its applications[J]. Information Technology, 2006, 30(1):53-56.
    李松, 刘力军, 翟曼. 改进粒子群算法优化BP神经网络的短时交通流预测[J]. 系统工程理论与实践, 2012, 32(9):2045-2049. Li Song, Liu Lijun, Zhai Man. Prediction for short-term traffic flow based on modified PSO optimized BP neural network[J]. System Engineering Theory &Practice, 2012, 32(9):2045-2049.
    何怡刚, 祝文姬, 周炎涛,等. 基于粒子群算法的模拟电路故障诊断方法[J]. 电工技术学报, 2010(6):163-171. He Yigang, Zhu Wenji, Zhou Yantao, et al. An analog circuit diagnosis method based on particle swarm optimization algorithm[J]. Transactions of China Electrotechnical Society, 2010(6):163-171.
    孙亚. 基于粒子群BP神经网络人脸识别算法[J]. 计算机仿真, 2008, 25(8):201-204. Sun Ya. Human face recognition based on PSO and BP neural network[J]. Computer Simulation, 2008, 25(8):201-204.
    Kloser R J. Seabed backscatter, data collection, and quality overview[J]. Ices Cooperative Research Report, 2007, 286:45-60.
    唐秋华, 周兴华, 丁继胜,等. 多波束反向散射强度数据处理研究[J]. 海洋学报, 2006, 28(2):51-55. Tang Qiuhua, Zhou Xinhua, Ding Jisheng, et al. Study on processing of multibeam backscatter data[J]. Haiyang Xuebao, 2006, 28(2):51-55.
    赵永祯, 唐劲松, 钟何平. 基于声呐图像纹理特征的海底底质分类方法研究[J]. 海洋测绘, 2015, 35(3):60-63. Zhao Yongzhen, Tang Jinsong, Zhong Heping. Seabed sediment classification based on texture feature of sonar imagery[J]. Hydrographic Surveying and Charting, 2015, 35(3):60-63.
    王惠明, 史萍. 图像纹理特征的提取方法[J]. 中国传媒大学学报:自然科学版, 2006, 13(1):49-52. Wang Huiming, Shi Ping. Methods to extract images texture features[J]. Journal of Communication University of China Science and Techology, 2006, 13(1):49-52.
    Haralick R M, Shanmugam K, Dinstein I. Textural features for image classification[J]. Systems Man & Cybernetics IEEE Transactions on, 1973, SMC-3(6):610-621.
    张铮, 王艳平, 薛桂香. 数字图像处理与机器视觉:Visual C++与Matlab实现[M]. 北京:人民邮电出版社, 2010. Zhang Zheng, Wang Yanping, Xue Guixiang. Digital Image Processing and Machine Vision:Visual C ++ and Matlab Realization[M]. Beijing:Posts & Telecom Press, 2010.
    于成龙. 基于特征提取的特征选择研究[D]. 南京:南京邮电大学, 2011. Yu Chenglong. Research on feature selection based on feature extraction[D]. Nanjing:Nanjing University of Posts and Telecommunications, 2011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (935) PDF downloads(678) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return