Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Fang Yongjie, Chu Min, Wu Tongwen, Zhang Lujun, Nie Sicheng. Couping of CICE5.0 with BCC_CSM2.0 model and its performance evaluation on Arctic sea ice simulation[J]. Haiyang Xuebao, 2017, 39(5): 33-43. doi: 10.3969/j.issn.0253-4193.2017.05.004
Citation: Fang Yongjie, Chu Min, Wu Tongwen, Zhang Lujun, Nie Sicheng. Couping of CICE5.0 with BCC_CSM2.0 model and its performance evaluation on Arctic sea ice simulation[J]. Haiyang Xuebao, 2017, 39(5): 33-43. doi: 10.3969/j.issn.0253-4193.2017.05.004

Couping of CICE5.0 with BCC_CSM2.0 model and its performance evaluation on Arctic sea ice simulation

doi: 10.3969/j.issn.0253-4193.2017.05.004
  • Received Date: 2016-07-04
  • Rev Recd Date: 2016-11-25
  • The latest Los Alamos sea ice model (CICE5.0) is coupled to the Beijing Climate Center coupled system model (BCC_CSM2.0) by replacing its original sea ice model (SIS). The performance of the new coupled model in simulating silent features of Arctic sea ice during 1985-2009 is thoroughly assessed through a comparison to both the original version and observations. The results show that the new coupled model can reasonably capture the spatial pattern, seasonal and inter-annual variation of Arctic sea ice. The CICE5.0 significantly improves the Arctic sea ice simulation, which includes a decrease (increase) of one year (multi-year) sea ice area, an increase in ice thickness, a reduction in ice motion, and a more realistic Beaufort Gyre. Further analysis indicates that, compared with the SIS, the better performance of the CICE5.0 in simulating the Arctic sea ice, especially for its thickness, results in positive ice-temperature feedbacks when coupled with the BCC_CSM2.0. As a result, the surface air temperature, sea level pressure, and the sea surface temperature are better simulated, which further improves the Arctic sea ice simulation.
  • loading
  • Cavalieri D J, Parkinson C L, Vinnikov K Y. 30-year satellite record reveals contrasting Arctic and Antarctic decadal sea ice variability[J]. Geophysical Research Letters, 2003, 30(18):CRY 4-1.
    Perovich D K, Richter-Menge J A. Loss of sea ice in the Arctic[J]. Annual Review of Marine Science, 2009, 1: 417-441.
    Kwok R, Rothrock D A. Decline in Arctic sea ice thickness from submarine and ICESat records: 1958-2008[J]. Geophysical Research Letters, 2009, 36: L15501.
    Rothrock D A, Yu Y, Maykut G A. Thinning of the Arctic sea-ice cover[J]. Geophysical Research Letters, 1999, 26(23): 3469-3472.
    Pfirman S, Haxby W F, Colony R, et al. Variability in Arctic sea ice drift[J]. Geophysical Research Letters, 2004, 31: L16402.
    Alexander M A, Bhatt U S, Walsh J E, et al. The atmospheric response to realistic sea ice anomalies in an AGCM during winter[J]. Journal of Climate, 2004, 17(5): 890-905.
    Walsh J E. The role of sea ice in climate variability: theories and evidence[J]. Atmosphere-Ocean, 1983, 21: 229-242.
    Parkinson C L, Vinnikov K Y, Cavalieri D J. Evaluation of the simulation of the annual cycle of Arctic and Antarctic sea ice coverages by 11 major global climate models[J]. Journal of Geophysical Research, 2006, 111: C07012.
    邱博, 张录军, 储敏, 等. 气候系统模式对于北极海冰模拟分析[J]. 极地研究, 2015, 27(1): 47-55. Qiu Bo, Zhang Lujun, Chu Min, et al. Performance analysis of arctic sea ice simulation in climate system models[J]. Chinese Journal of Polar Research, 2015, 27(1): 47-55.
    王秀成, 刘骥平, 俞永强, 等. FGOALS_g1.1极地气候模拟[J]. 气象学报, 2009, 67 (6): 961-972. Wang Xiucheng, Liu Jiping, Yu Yongqiang, et al. Polar climate simulation in FGOALS_g1.1[J]. Acta Meteorologica Sinica, 2009, 67 (6): 961-972.
    王秀成, 刘骥平, 俞永强, 等. 海冰模式CICE4.0与LASG/IAP气候系统模式的耦合试验[J]. 大气科学, 2010, 34 (4): 780-792. Wang Xiucheng, Liu Jiping, Yu Yongqiang, et al. Experiment of coupling sea ice model CICE4.0to LASG/IAP climate system model[J]. Chineses Journal of Atmospheric Science, 2010, 34 (4): 780-792.
    Turner J, Bracegirdle T J, Phillips T, et al. An initial assessment of Antarctic sea ice extent in the CMIP5 models[J]. Journal of Climate, 2013, 26(5): 1473-1484.
    舒启,乔方利,宋振亚.地球系统模式FIO-ESM对北极海冰的模拟和预估[J].海洋学报, 2013, 35(5): 37-45. Shu Qi, Qiao Fangli, Song Zhenya. The hindcast and forecast of sea ice in the Arctic by FIO-ESM based on CMIP5 experiments[J].Haiyang Xuebao, 2013, 35(5): 37-45.
    Kiehl J T, Gent P R. The community climate system model (version 2)[J]. Journal of Climate, 2004, 17(19): 3666-3682.
    Wu Tongwen, Yu Rucong, Zhang Fang, et al. The Beijing Climate Center atmospheric general circulation model: description and its performance for the present-day climate[J]. Climate Dynamics, 2010, 34:123-147.
    Murray R J. Explicit generation of orthogonal grids for ocean models[J]. Journal of Compute Physics, 1996, 126: 251-273.
    Winton M. A reformulated three-layer sea ice model[J]. Journal of Atmospheric Oceanic Technology, 2000, 17: 525-531.
    Wu Tongwen, Li Weiping, Ji Jinjun, et al. Global carbon budgets simulated by the Beijing Climate Center Climate System Model for the last century [J]. Journal of Geophysical Research Atmosphere, 2003, 118(10), 4326-4347.
    吴统文, 宋连春, 刘向文, 等. 国家气候中心短期气候预测模式系统业务化进展[J]. 应用气象学报, 2013, 24(5): 535-543. Wu Tongwen, Song Lianchun, Liu Xiangwen, et al. Progress in developing the short-range operational climate prediction system of China National Climate Center[J]. Journal of Applied Meteorological Science, 2013, 24(5): 535-543.
    董思言, 髙学杰. 长期气候变化: IPCC第五次评估报告解读[J]. 气候变化研究进展, 2014, 10(1): 56-59. Dong Siyan, Gao Xuejie. Long-term climate change: interpretation of IPCC fifth assessment report[J]. Progressus Inquisitiones de Mutatione Climatis, 2014, 10(1): 56-59.
    吴统文, 宋连春, 李伟平, 等. 北京气候中心气候系统模式研发进展—在气候变化研究中的应用[J]. 气象学报, 2014, 72(1): 12-29. Wu Tongwen, Song Lianchun, Li Weiping, et al. An overview on progress in Beijing Climate Certer Climate System Model—Its development and application to climate change studies[J]. Acta Meteorologica Sinica, 2014, 72(1): 12-29.
    谭慧慧, 张录军, 储敏, 等. BCC_CSM对全球海冰面积和厚度模拟及其误差成因分析[J]. 大气科学, 2015, 39 (1): 197-209. Tan Huihui, Zhang Lujun, Chu Min, et al. An analysis of simulated global sea ice extent, and causes of error with the BCC_CSM model[J]. Chinese Journal of Atmospheric Sciences (in Chinese),2015, 39 (1): 197-209.
    Hunke E C, Lipscomb W H, Turner A K, et al. CICE: the Los Alamos Sea Ice Model Documentation and Software User's Manual Version 5.0 LA-CC-06-012[S]. Los Alamos National Laboratory, Los Alamos NM, 2013, 87545:115.
    Hunke E C, Dukowicz J K. An elastic-viscous-plastic model for sea ice dynamics[J]. Journal of Physics Oceanography, 1997, 27: 1849-1867.
    Thorndike A S, Rothrock D A, Maykut G A, et al. The thic慫湮慥汳祳猠敤獩?晴潲物?獵整慩?獮甠牯晦愠捳敥?琠敩浣灥敛牊慝琮甠牊敯孵?嵮???潯畦爠湇慥汯?潨晹??汣楡浬愠瑒敥???ひっ???㈱??‵???????????戵爰?嬭??崱″?愼牢瑲漾湛′??????桳散灯畭牢椠湗?????慵潮?塥????攬琠?慡汳????獫楩洠灗氬攠?潴挠敡慬渮?摒慩瑤慧?慮獧猬椠浳楴汲慥瑮楧潴湨?愠湡慮汤礠獳楴獡?潩晬?瑴桹攠?杮氠潨扩慧汨?畲灥灳敯牬?潴捩敯慮渠????ど?????偤慥牬瑳?????敊瑯桵潲摮潡汬漠杯祦嬠?嵥???潹畳物湣慡汬?潒晥?健桡祲獣楨挬愠氲‰估挷攬愠渱漱朲爺愠灃栰礳??㈱??ぢ? ̄????????????????扈牥?孥??崠??潁挬愠牌湥楣湯業?剴?????楌獥桶潥湬漭癩???噭???渠瑰潯湮潤癳??????敥琠?慯汳??坬潡牭汯摳?佳捥敡愠湩??琠汭慯獤?????孉剃嵅??噝漮氠畏浣敥????呯敤浥灬攬爠愲琰由爳攬??丱伺????琴氲愮猼?乲?卛??卝?????啡?卤???漠療敡物湬浥敹渠瑄?偁爬椠湂瑲楩湥杧?佥晢映楂挠敐?圠慥獴栠楡湬朮琠潉湭????????づ???ce shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on Arctic sea ice[J]. Journal of Climate, 2012, 25: 1413-1430.
    Connolley W M, Gregory J M, Hunke E, et al. On the consistent scaling of terms in the sea-ice dynamics equation[J]. Journal of Physics Oceanography, 2004, 34(7): 1776-1780.
    Turner A K, Hunke E C, Bitz C M. Two modes of sea-ice gravity drainage: A parameterization for large-scale modeling[J]. Journal of Geophysical Research Oceans, 2013, 118: 2279-2294.
    辛晓歌, 吴统文, 张洁. BCC气候系统模式开展的CMIP5试验介绍[J]. 气候变化研究进展, 2012, 8(5): 378-382. Xin Xiaoge, Wu Tongwen, Zhang Jie. Introduction of CMIP5 experiments carried out by BCC climate system model[J]. Progressus Inquisitiones de Mutatione Climatis, 2012, 8(5): 378-382.
    Rayner N A, Parker D E, Horton E B, et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. Journal of Geophysical Research, 2003, 108(D14): 4407.
    Fowler C. Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors[S]. National Snow and Ice Data Center, Boulder,Colorado, 2007.
    Bourke R H, Garrett R P. Sea ice thickness distribution in the Arctic-Ocean[J]. Cold Regions Science and Technology, 1987, 13(3): 259-280.
    Dee D P, Uppala S M, Simmons A J, et al. The ERA-interim reanalysis: Configuration and per-formance of the data assimilation system[J]. Quarterly Jounral of Royal Meteorological Society, 2011, 137: 553-597.
    Reynolds R W, Smith T M, Liu C, et al. Daily high-resolution-blended
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1273) PDF downloads(532) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return