Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Fan Miao, Sun Yi, Xing Zhe, Wang Yiting, Li Sihai, Jin Jiye. Bathymetry fusion techniques for high-resolution digital bathymetric modeling[J]. Haiyang Xuebao, 2017, 39(1): 130-137. doi: 10.3969/j.issn.0253-4193.2017.01.014
Citation: Fan Miao, Sun Yi, Xing Zhe, Wang Yiting, Li Sihai, Jin Jiye. Bathymetry fusion techniques for high-resolution digital bathymetric modeling[J]. Haiyang Xuebao, 2017, 39(1): 130-137. doi: 10.3969/j.issn.0253-4193.2017.01.014

Bathymetry fusion techniques for high-resolution digital bathymetric modeling

doi: 10.3969/j.issn.0253-4193.2017.01.014
  • Received Date: 2016-01-29
  • Rev Recd Date: 2016-08-21
  • This paper reviews current fusion techniques used for bathymetry data, introduces the "Splines-in-Tension" interpolation and "remove-restore" techniques for bathymetry fusion. Based on these techniques, high-resolution digital bathymetric model is built using multi-beam, single-beam and historical charts data sets. In addition, facing the lack of error estimates for the interpolated grid points, the paper uses split-sample method to assess the uncertainty of the result for reliability. It shows a satisfied result with error percent about 0.5% both in sparse and dense areas, preserving the detail information of high-resolution data, possessing the vivid characteristics of the sea bottom. The whole techniques can be applied in multi-sources data fusion and combination.
  • Sandwell D, Smith W H F. Bathymetric Estimation[M]//Fu L L, Cazenave A. Satellite Altimetry and Earth Sciences:A Handbook of Techniques and Applications. San Diego, CA:Academic Press, 2001:441-457.
    Becker J J, Sandwell D T, Smith W H F, et al. Global bathymetry and elevation data at 30 arc seconds resolution:srtm30_plus[J]. Marine Geodesy, 2009, 32(4):355-371.
    Jakobsson M, Calder B, Mayer L. On the effect of random errors in gridded bathymetric compilations[J]. Journal of Geophysical Research, 2002, 107(B12):ETG 14-1-ETG 14-11.
    Elmore P A, Steed C A. Algorithm design study for bathymetry fusion-review of current state-of-the-art and recommended design approach[R]. San Diego, CA:Naval Research Laboratory, Marine Geosciences Division, 2008
    Gesch D, Wilson R. Development of a seamless multisource topographic/bathymetric elevation model of tampa bay[J]. Marine Technology Society Journal, 2002, 35(4):58-64.
    Alcȃntara E, Novo E, Stech J, et al. Integrating historical topographic maps and SRTM data to derive the bathymetry of a tropical reservoir[J]. Journal of Hydrology, 2010, 389(3/4):311-316.
    Jha S K, Bailey B, Minsker B S, et al. Updating river bathymetry with multiple data sources using kriging[C]//American Geophysical Union, Fall Meeting 2011. Denver, CO:American Geophysical Union, 2011:1329.
    Carter G S, Shankar U. Creating rectangular bathymetry grids for environmental numerical modelling of gravel-bed rivers[J]. Applied Mathematical Modelling, 1997, 21(11):699-708.
    Hell B, Jakobsson M. Gridding heterogeneous bathymetric data sets with stacked continuous curvature splines in tension[J]. Marine Geophysical Research, 2011, 32(4):493-501.
    Sindhu B, Suresh I, Unnikrishnan A S, et al. Improved bathymetric datasets for the shallow water regions in the Indian Ocean[J]. Journal of Earth System Science, 2007, 116(3):261-274.
    Jakobsson M, Mayer L, Coakley B, et al. The international bathymetric chart of the Arctic Ocean (IBCAO) Version 3.0[J]. Geophysical Research Letters, 2012, 39(12):L12609.
    Arndt J E, Schenke H W, Jakobsson M, et al. The International Bathymetric Chart of the Southern Ocean (IBCSO) Version 1.0-a new bathymetric compilation covering circum-antarctic waters[J]. Geophysical Research Letters, 2013, 40(12):3111-3117.
    Jha S K, Mariethoz G, Kelly B F J. Bathymetry fusion using multiple-point geostatistics:novelty and challenges in representing non-stationary bedforms[J]. Environmental Modelling & Software, 2013, 50:66-76.
    Smith W H F, Sandwell D T. Global sea floor topography from satellite altimetry and ship depth soundings[J]. Science, 1997, 277(5334):1956-1962.
    Smith W H F, Wessel P. Gridding with continuous curvature splines in tension[J]. Geophysics, 1990, 55(3):293-305.
    Jakobsson M, Macnab R,Mayer L, et al. An improved bathymetric portrayal of the Arctic Ocean:implications for ocean modeling and geological, geophysical and oceanographic analyses[J]. Geophysical Research Letters, 2008, 35(7):L07602.
    Forsberg R, Tscherning C C. The use of height data in gravity field approximation by collocation[J]. Journal of Geophysical Research:Solid Earth, 1981, 86(B9):7843-7854.
    Calder B. On the uncertainty of archive hydrographic data sets[J]. IEEE Journal of Oceanic Engineering, 2006, 31(2):249-265.
    王耀革. DEM建模与不确定性分析[D]. 郑州:解放军信息工程大学, 2009:21-32. Wang Yaoge. Study of DEM generation and uncertainty[D]. Zhengzhou:PLA Information Engineering University, 2009:21-32.
    Hare R, Eakins B, Amante C. Modelling bathymetric uncertainty[J]. International Hydrographic Review, 2011, 4(2):31-42.
    International Hydrographic Organization, Intergovernmental Oceanographic Commission.IOC Manuals and Guides 63[S].Monaco:IHO Publication B-11,2015:429.
    刘艳霞, 黄海军, 杨晓阳. 基于遥感反演的莱州湾悬沙分布及其沉积动力分析[J]. 海洋学报, 2013, 35(6):43-53. Liu Yanxia, Huang Haijun, Yang Xiaoyang. The transportation and deposition of suspended sediment and its dynamic mechanism analysis based on Landsat images in the Laizhou Bay[J].Haiyang Xuebao, 2013, 35(6):43-53.
  • Relative Articles

  • Cited by

    Periodical cited type(8)

    1. 武芳,杜佳威,吴芳华. 海底地貌数据综合研究进展. 测绘学报. 2022(07): 1588-1605 .
    2. 陶怡轩,刘成彦,王召民. 水文水深数据修正的普里兹湾数字水深模型. 大气科学学报. 2021(01): 128-139 .
    3. 程建华,黄孟远,葛靖宇,吕嘉正. 基于改进“移去-恢复”算法的海底地形构建方法研究. 地球信息科学学报. 2021(03): 377-384 .
    4. 陈义兰,唐秋华,刘晓瑜,王燕红. 多源水深数据融合的近海数字水深模型构建. 海洋科学进展. 2021(03): 461-469 .
    5. 王炎,田雨. 基于海图和ASTER GDEM数据融合的水陆一体连续地形构建. 中国港湾建设. 2020(03): 13-19 .
    6. 马丹,樊妙,武双全,马永,王晶. 基于海陆融合DEM的大尺度潮间带提取方法. 海洋信息. 2020(04): 35-40 .
    7. 刘洋,吴自银,赵荻能,周洁琼,尚继宏,王明伟,朱超,鲁号号. MF多源测深数据融合方法及大洋水深模型构建. 测绘学报. 2019(09): 1171-1181 .
    8. 田茂义,王延存,俞家勇,贺岩,曹岳飞,吕德亮,胡善江,杨忠,朱霞,石先高. 机载激光测深系统与船载移动测量系统数据配准方法研究. 激光与光电子学进展. 2018(08): 18-25 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 11.0 %FULLTEXT: 11.0 %META: 80.1 %META: 80.1 %PDF: 8.9 %PDF: 8.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 2.4 %其他: 2.4 %China: 0.3 %China: 0.3 %Russian Federation: 2.1 %Russian Federation: 2.1 %[]: 0.3 %[]: 0.3 %上海: 2.7 %上海: 2.7 %中山: 0.3 %中山: 0.3 %九江: 1.4 %九江: 1.4 %北京: 6.9 %北京: 6.9 %南京: 5.5 %南京: 5.5 %台州: 1.0 %台州: 1.0 %哥伦布: 0.7 %哥伦布: 0.7 %天津: 1.4 %天津: 1.4 %太原: 1.0 %太原: 1.0 %威海: 0.3 %威海: 0.3 %宜昌: 0.7 %宜昌: 0.7 %宣城: 0.3 %宣城: 0.3 %山东省: 1.7 %山东省: 1.7 %巴黎: 2.4 %巴黎: 2.4 %布雷斯特: 1.0 %布雷斯特: 1.0 %广州: 2.4 %广州: 2.4 %张家口: 3.1 %张家口: 3.1 %悉尼: 1.4 %悉尼: 1.4 %杭州: 3.4 %杭州: 3.4 %武汉: 2.1 %武汉: 2.1 %深圳: 0.3 %深圳: 0.3 %温州: 0.3 %温州: 0.3 %漯河: 1.7 %漯河: 1.7 %芒廷维尤: 40.2 %芒廷维尤: 40.2 %衡水: 1.4 %衡水: 1.4 %西宁: 3.8 %西宁: 3.8 %西安: 1.0 %西安: 1.0 %长治: 0.3 %长治: 0.3 %阜新: 1.0 %阜新: 1.0 %青岛: 3.1 %青岛: 3.1 %香港: 1.4 %香港: 1.4 %马鞍山: 0.3 %马鞍山: 0.3 %其他ChinaRussian Federation[]上海中山九江北京南京台州哥伦布天津太原威海宜昌宣城山东省巴黎布雷斯特广州张家口悉尼杭州武汉深圳温州漯河芒廷维尤衡水西宁西安长治阜新青岛香港马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1156) PDF downloads(1090) Cited by(13)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return