Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Weng Jinbao, Yang Yanming. A passive sea-surface source ranging method by single hydrophone in deep sea[J]. Haiyang Xuebao, 2017, 39(1): 36-45. doi: 10.3969/j.issn.0253-4193.2017.01.004
Citation: Weng Jinbao, Yang Yanming. A passive sea-surface source ranging method by single hydrophone in deep sea[J]. Haiyang Xuebao, 2017, 39(1): 36-45. doi: 10.3969/j.issn.0253-4193.2017.01.004

A passive sea-surface source ranging method by single hydrophone in deep sea

doi: 10.3969/j.issn.0253-4193.2017.01.004
  • Received Date: 2016-01-07
  • Rev Recd Date: 2016-07-13
  • The sound field frequency-range interference patterns of sea-surface source in deep water are discussed based on ray theory. Approximate formulae of the sound field frequency-range interference patterns in the shadow zone are provided. In the shadow zone, the interference cycle decreases with the increase of the depth of the receiver and increases with the increase of the propagation range. As a result, the source range can be extracted from the interference cycle of the sound intensity using a single hydrophone. The sound field interference patterns caused by sea-surface broadband noise sources in the shadow zone have been observed in a deep sea experiment in the South China Sea. The availability of the shadow zone sound field interference structure in the passive source range estimation is verified by experimental data. Compared with conventional matched field passive source localization method, this method doesn't need seafloor acoustic parameters and large scale computing of replica fields.
  • 李启虎. 声呐信号处理引论[M]. 北京:海洋出版社, 1985. Li Qihu. The Introduction of Sonar Signal Processing[M]. Beijing:China Ocean Press, 1985.
    Smith J O, Abel J S. Closed-form least-square source location estimation from range-difference measurements[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1987, 35(12):1661-1669.
    Baggeroer A B, Kuperman W A, Mikhalevsky P N. An overview of matched field methods in ocean acoustics[J]. IEEE Journal of Oceanic Engineering, 1993, 18(4):401-424.
    Nardone S C, Lindgren A G, Gong K F. Fundamental properties and performance of conventional bearings-only target motion analysis[J]. IEEE Transactions on Automatic Control, 1984, 29(9):775-787.
    Tao H, Hickman G, Krolik J L, et al. Single hydrophone passive localization of transiting acoustics sources[C]//Proceedings of OCEANS 2007,IEEE. Scotland, 2007:1-3.
    Kevin L C, Henrik S. Robust passive range estimation using the waveguide invariant[J]. Journal of the Acoustical Society of America, 2010, 127(5):2780-2789.
    Rakotonarivo S T, Kuperman W A. Model-independent range localization of a moving source in shallow water[J]. Journal of the Acoustical Society of America, 2012, 132(4):2218-2223.
    Lee S, Makris N C. The array invariant[J]. Journal of the Acoustical Society of America, 2006, 119(1):336-351.
    Chuprov S D. Interference structure of a sound field in a layered ocean[M]//Ocean Acoustics:Current State. Moscow:Nauka, 1982:71-79.
    Zhao Z D, Wang N, Gao D Z. Broadband source ranging in shallow water using the Ω-interference spectrum[J]. Chinese Physics Letters, 2010, 27(6):110-113.
    戚聿波, 周士弘, 张仁和, 等. 一种基于β-warping变换算子的被动声源距离估计方法[J]. 物理学报, 2015, 64(7):074301-1-074301-6. Qi Yubo, Zhou Shihong, Zhang Renhe, et al. A passive source ranging method using the waveguide-invariant-warping operator[J]. Acta Physica Sinica, 2015, 64(7):074301-1-074301-6.
    任云, 戚聿波, 周士弘, 等. 声强谱频移补偿的波导不变量和距离估计方法[J]. 声学学报, 2014, 39(3):319-323. Ren Yun, Qi Yubo, Zhou Shihong, et al. Waveguide invariant and range estimation based on frequency-shift-compensation of underwater acoustic intensity spectrograms[J]. Acta Acustica, 2014, 39(3):319-323.
    Thode A M, Kuperman W A, D'Spain G L, et al. Localization using Bartlett matched-field processor sidelobes[J]. Journal of the Acoustical Society of America, 2000, 107(1):278-286.
    吴国清. 线谱非平稳性分析和利用干涉谱测距[J]. 声学学报, 2004, 29(4):363-368. Wu Guoqing. Nonstationarity analysis of line spectrum and range estimation by spectrum interference[J]. Acta Acustica, 2004, 29(4):363-368.
    翁晋宝, 李风华, 郭永刚. 典型深海声场频率-距离干涉结构分析及实验研究[J]. 声学学报, 2016, 41(3):330-342. Weng Jinbao, Li Fenghua, Guo Yonggang. The sound field frequency-range interference patterns in deep water:theory and experiment[J]. Acta Acustica, 2016, 41(3):330-342.
    翁晋宝, 李风华, 郭永刚. 深海近距离声场频率-距离干涉结构反演海底声学参数[J]. 声学学报, 2015, 40(2):207-215. Weng Jinbao, Li Fenghua, Guo Yonggang. Geoacoustic inversion based on near-field frequency-range interference pattern in deep water[J]. Acta Acustica, 2015, 40(2):207-215.
    Porter M B. The BELLHOP Manual and User's Guide:PRELIMINARY DRAFT[OL]. http://oalib.hlsresearch.com/Rays/HLS-2010-1.pdf, 2011-01-31/2016-01-07.
  • Relative Articles

    [1]Wang Juncheng, Kong Qinglin, Li Yunzhou, Zheng Liang, Yang Yingdong, Liu Shixuan, Chen Shizhe, Yin Jingwei. Research progress and prospects of underwater target detection based on buoys[J]. Haiyang Xuebao. doi: 10.12284/hyxb2025001
    [2]Guo Hao, Ji Qing, Pang Xiaoping, Shi Lijian, Yan Zhongnan, Luo Chongxin. Comparison and evaluation of seven commonly used Antarctic passive microwave sea ice concentration products[J]. Haiyang Xuebao, 2023, 45(6): 141-159. doi: 10.12284/hyxb2023083
    [3]Zhang Mingqi, Xu Yongsheng, Zhang Qingjun, Zhang Liqiang, Xiang Liang, Guo Ping, Yang Liang, Huang Chao, Sun Hanwei. Variational method of ocean three-dimensional thermohaline structure and its acoustic performance evaluation[J]. Haiyang Xuebao, 2023, 45(12): 133-144. doi: 10.12284/hyxb2023163
    [4]Yu Mingtong, Liu Xiuming, Yang Huawei, Cao Hongwei, Tang Rongjun, Liu Wei, Gong Zhengquan, Chen Youxi, Chen Ying, Sun Qiaohong, Guo Jie. The parameters of target samples as criterion to research environmental evolution in bay:as the case of Qianhu Bay, Fujian Province[J]. Haiyang Xuebao, 2015, 37(9): 106-112.
    [5]LI Jiaxun, ZHANG Ren, JIN Baogang, CHEN Yide. Sound fluctuation caused by the internal wave under different stratified conditions in the Pacific[J]. Haiyang Xuebao, 2013, 35(3): 78-86. doi: 10.3969/j.issn.0253-4193.2013.03.009
    [6]WANG Chang-you, WANG Xiu-lin, LIANG Sheng-kang, SU Rong-guo, TANG Hong-jie, ZHANG Chuan-song, YANG Sheng-peng. The methods for calibrating average concentration in the domain and estimating average annual concentration of pollutants in the sea area being partially or totally different from target domains[J]. Haiyang Xuebao, 2010, 32(2): 155-160.
    [7]GUO Hai-tao, YANG Zhi-min, TIAN Tan, DAI Yu-zhi. A improved method based on the one-dimensional maximum entropy for segmentation of a sonar image from a small underwater target[J]. Haiyang Xuebao, 2007, 29(4): 152-155.
    [8]DAI Min-guo, HUANG Da-ji, ZHANG Ben-zhao. Analyses of sound velocity field in sea area by Ryūkyū-guntō[J]. Haiyang Xuebao, 2005, 27(1): 45-50.
    [9]Qi Yiquan, Shi Ping, Mao Qingwen, Guo Peifang. Analysis of typhoon Betty 1987 on sea surface wind and wave overthe western Pacific using Geosat altimetric data[J]. Haiyang Xuebao, 1998, 20(3): 27-35.
    [17]Zhou Jianli, Zhang Renhe. NUMERICAL SIMULATION OF AVERAGED SOUND FIELD IN THE SEA I[J]. Haiyang Xuebao, 1982, 4(3): 283-291.
    [18]Zhang Renhe. SMOOTH-AVERAGED SOUND FIELD IN SHALLOW WATER[J]. Haiyang Xuebao, 1981, 3(4): 535-545.
    [19]Shang Frchang. THE EFFECTS OF THE BOUNDARY REFLECTION ON THE AMBIENT NOISE FIELD IN SHALLOW WATER[J]. Haiyang Xuebao, 1980, 2(1): 33-42.
    [20]Guan Dinghua. The Relationship Between Sound Field and Bottom-Reflection-Loss in Homogeneous Shallow Water[J]. Haiyang Xuebao, 1979, 1(1): 52-57.
  • Cited by

    Periodical cited type(3)

    1. 陈永强,王慧源. 基于聚焦法的深海第一影区声源干涉结构应用研究. 声学与电子工程. 2024(04): 5-10 .
    2. 王磊. 深水域入水点复合声学测量性能分析. 舰船电子工程. 2022(01): 135-140 .
    3. 张旭,李智生,邱仁贵,董楠. 深海季节性环境变化对半会聚区尺度水面声定位影响分析. 海洋学报. 2020(03): 59-71 . 本站查看

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 6.6 %FULLTEXT: 6.6 %META: 91.0 %META: 91.0 %PDF: 2.4 %PDF: 2.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.1 %其他: 4.1 %其他: 0.3 %其他: 0.3 %China: 0.3 %China: 0.3 %Russian Federation: 0.3 %Russian Federation: 0.3 %上海: 0.3 %上海: 0.3 %中山: 0.3 %中山: 0.3 %北京: 7.2 %北京: 7.2 %十堰: 0.3 %十堰: 0.3 %哈尔滨: 1.0 %哈尔滨: 1.0 %哥伦布: 0.7 %哥伦布: 0.7 %天津: 1.4 %天津: 1.4 %广州: 0.3 %广州: 0.3 %张家口: 2.1 %张家口: 2.1 %成都: 0.3 %成都: 0.3 %扬州: 0.3 %扬州: 0.3 %昆明: 1.0 %昆明: 1.0 %杭州: 0.7 %杭州: 0.7 %武汉: 1.0 %武汉: 1.0 %江门: 0.7 %江门: 0.7 %沈阳: 0.3 %沈阳: 0.3 %济南: 0.3 %济南: 0.3 %淄博: 0.3 %淄博: 0.3 %漯河: 0.3 %漯河: 0.3 %芒廷维尤: 37.6 %芒廷维尤: 37.6 %西宁: 34.8 %西宁: 34.8 %连云港: 0.3 %连云港: 0.3 %重庆: 1.0 %重庆: 1.0 %金华: 0.3 %金华: 0.3 %金夏沙: 0.7 %金夏沙: 0.7 %马鞍山: 0.7 %马鞍山: 0.7 %其他其他ChinaRussian Federation上海中山北京十堰哈尔滨哥伦布天津广州张家口成都扬州昆明杭州武汉江门沈阳济南淄博漯河芒廷维尤西宁连云港重庆金华金夏沙马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1063) PDF downloads(964) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return