Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Sun Xin, Song Guisheng, Xie Huixiang. The apparent quantum yields of dissolved organic matter photobleaching and photomineralization in the Changjiang River Estuary[J]. Haiyang Xuebao, 2016, 38(4): 120-129. doi: 10.3969/j.issn.0253-4193.2016.04.011
Citation: Sun Xin, Song Guisheng, Xie Huixiang. The apparent quantum yields of dissolved organic matter photobleaching and photomineralization in the Changjiang River Estuary[J]. Haiyang Xuebao, 2016, 38(4): 120-129. doi: 10.3969/j.issn.0253-4193.2016.04.011

The apparent quantum yields of dissolved organic matter photobleaching and photomineralization in the Changjiang River Estuary

doi: 10.3969/j.issn.0253-4193.2016.04.011
  • Received Date: 2015-11-03
  • Rev Recd Date: 2015-12-24
  • Exposure of dissolved organic matter (DOM) to irradiation leads to the losses of absorbance (photobleaching) and carbon (photomineralization),thereby impacting the optics and carbon cycle in aquatic environments. In this study,the apparent quantum yields (AQY) of DOM photodegradation in the Changjiang River Estuary and its adjacent sea was investigated to evaluate the variation character of DOM photodegradation in the estuarine and coastal waters. AQY of DOM photodegradation gradually decreases seaward and the photobleaching rate of chromophoric DOM (CDOM) is about ten times that of dissolved organic carbon (DOC) photomineralization along the entire estuary. The significant negative linear correlation between the Φble (solar spectrum-weighted mean apparent quantum yield of CDOM photobleaching, or Φmin:solar spectrum-weighted mean apparent quantum yield of DOC photomineralization) and salinity in the region seaward from the turbidity maximum zone,as well as the significant positive linear correlations between Φble(or Φmin) and SUVA254 indicated the physical mixing process should be the dominant factor in controlling the photoreactivity of DOM along the Changjiang River Estuary and the photoreactivity of terrestrial DOM was higher than that of marine-derived DOM. AQY of DOM photodegradation in the lower section was much lower than that in the upper section. The action spectra of DOM phodegradation was characterized as a non-Gaussian style,with the peak response located around 330 nm. The wavelength integrated result demonstrated UVA is the main contributor to DOM photodegradation. This study will provide help to improve the carbon flux model in the East China Sea.
  • loading
  • Erickson III D J,Zepp R G,Atlas E. Ozone depletion and the air-sea exchange of greenhouse and chemically reactive trace gases[J]. Chemosphere-Global Change Science,2000,2(2):137-149.
    Zhang Yunlin,Liu Mingliang,Qin Boqiang,et al. Photochemical degradation of chromophoric-dissolved organic matter exposed to simulated UV-B and natural solar radiation[J]. Hydrobiologia,2009,627(1):159-168.
    Bertilsson S,Tranvik L J. Photochemical transformation of dissolved organic matter in lakes[J]. Limnology and Oceanography,2000,45(4):753-762.
    Del Vecchio R,Blough N V. Photobleaching of chromophoric dissolved organic matter in natural waters:kinetics and modeling[J]. Marine Chemistry,2002,78(4):231-253.
    Vähätalo A V,Salonen K,Münster U,et al. Photochemical transformation of allochthonous organic matter provides bioavailable nutrients in a humic lake[J]. Archiv für Hydrobiologie,2003,156(3):287-314.
    Helms J R,Stubbins A,Ritchie J D,et al. Absorption spectral slopes and slope ratios as indicators of molecular weight,source,and photobleaching of chromophoric dissolved organic matter[J]. Limnology and Oceanography,2008,53(3):955-969.
    Swan C M,Siegel D A,Nelson N B,et al. Biogeochemical and hydrographic controls on chromophoric dissolved organic matter distribution in the Pacific Ocean[J]. Deep-Sea Research Part Ⅰ:Oceanographic Research Papers,2009,56(12):2175-2192.
    Valentine R L,Zepp R G. Formation of carbon monoxide from the photodegradation of terrestrial dissolved organic carbon in natural waters[J]. Environmental Science & Technology,1993,27(2):409-412.
    Stubbins A,Uher G,Law C S,et al. Open-ocean carbon monoxide photoproduction[J]. Deep-Sea Research Part Ⅱ:Topical Studies in Oceanography,2006,53(14/16):1695-1705.
    Johannessen S C H. A photochemical sink for dissolved organic carbon in the ocean[D]. Dalhousie:Dalhousie University,2000.
    Mopper K,Kieber D J,Stubbins A. Marine photochemistry of organic matter:processes and impacts[M]//Hansell D A,Carlson C A. Biogeochemistry of Marine Dissolved Organic Matter. 2nd ed. New York:Academic Press,2015.
    Xie Huixiang,Zafiriou O C,Wang Wei,et al. A simple automated continuous-flow-equilibration method for measuring carbon monoxide in seawater[J]. Environmental Science & Technology,2001,35(7):1475-1480.
    Johannessen S C,Miller W L. Quantum yield for the photochemical production of dissolved inorganic carbon in seawater[J]. Marine Chemistry,2001,76(4):271-283.
    Bélanger S. Response of light-related carbon fluxes in the Arctic Ocean to climate change:quantification and monitoring of dissolved organic matter photo-oxidation in the Beaufort Sea using satellite remote sensing[D]. Paris:Université Pierre et Marie Curie,2006.
    Koehler B,Landelius T,Weyhenmeyer G A,et al. Sunlight-induced carbon dioxide emissions from inland waters[J]. Global Biogeochemical Cycles,2014,28(7):696-711.
    White E M,Kieber D J,Sherrard J,et al. Carbon dioxide and carbon monoxide photoproduction quantum yields in the Delaware Estuary[J]. Marine Chemistry,2010,118(1/2):11-21.
    Osburn C L,Zagarese H E,Morris D P,et al. Calculation of spectral weighting functions for the solar photobleaching of chromophoric dissolved organic matter in temperate lakes[J]. Limnology and Oceanography,2001,46(6):1455-1467.
    Osburn C L,Retamal L,Vincent W F,et al. Photoreactivity of chromophoric dissolved organic matter transported by the Mackenzie River to the Beaufort Sea[J]. Marine Chemistry,2009,115(1):10-20.
    孙湘平. 中国近海区域海洋[M]. 北京:海洋出版社,2006. Sun Xiangping. China offshore marine area[M]. Beijing:China Ocean Press,2006.
    Yang Hongjun,Shen Zhemin,Zhang Jinping,et al. Water quality characteristics along the course of the Huangpu River (China)[J]. Journal of Environmental Sciences,2007,19(10):1193-1198.
    Müller B,Berg M,Yao Z P,et al. How polluted is the Yangtze river? Water quality downstream from the Three Gorges Dam[J]. Science of the Total Environment,2008,402(2/3):232-247.
    林建荣. 长江口、珠江口溶解有机碳的行为与通量[D]. 厦门:厦门大学,2007. Lin Jianrong. On the behaviour and flux of two large Chinese estuaries-Changjiang and Zhujiang[D]. Xiamen:Xiamen University,2007.
    Guo Weidong,Stedmon C A,Han Yuchao,et al. The conservative and non-conservative behavior of chromophoric dissolved organic matter in Chinese estuarine waters[J]. Marine Chemistry,2007,107(3):357-366.
    李奕洁,宋贵生,胡素征,等. 2014年夏季长江口有色溶解有机物(CDOM)的分布、光学特性及其来源探究[J]. 海洋与湖沼,2015,46(3):670-678. Li Yijie,Song Guisheng,Hu Suzheng,et al. Optical characterization,distribution and sources of chromophoric dissolved organic material (CDOM) in the Changjiang River Estuary in July 2014[J]. Oceanologia et Limnologia Sinica,2015,46(3):670-678.
    Babin M,Stramski D,Ferrari G M,et al. Variations in the light absorption coefficients of phytoplankton,nonalgal particles,and dissolved organic matter in coastal waters around Europe[J]. Journal of Geophysical Research:Oceans (1978-2012),2003,108(C7):3211.
    Hu Chuanmin,Muller-Karger F E,Zepp R G,et al. Absorbance,absorption coefficient,and apparent quantum yield:a comment on common ambiguity in the use of these optical concepts[J]. Limnology and Oceanography,2002,47(4):1261-1267.
    Buiteveld H,Hakvoort J H M,Donze M. Optical properties of pure water[C]//Jaffe J S. Ocean Optics XII. Bergen,Norway:International Society for Optics and Photonics,1994,2258:174-183.
    Pope R M,Fry E S. Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements[J]. Applied Optics,1997,36(33):8710-8723.
    Zhang Yong,Xie Huixiang,Chen Guohua,et al. Factors affecting the efficiency of carbon monoxide photoproduction in the St. Lawrence estuarine system (Canada)[J]. Environmental Science & Technology,2006,40(24):7771-7777.
    朱伟健. 长江口及邻近海域有色溶解有机物(CDOM)的光学特性和遥感反演的初步研究[D]. 上海:华东师范大学,2010. Zhu Weijian. Optical properties and remote sensing retrieval of colored dissolved organic materials (CDOM) in Yangtze Estuary and adjacent waters[D]. Shanghai:East China Normal University,2010.
    苏纪兰. 中国近海的环流动力机制研究[J]. 海洋学报,2001,23(4):1-16. Su Jilan. A review of circulation dynamics of the coastal oceans near China[J]. Haiyang Xuebao,2001,23(4):1-16.
    白虹,王凡. 台湾暖流水和长江冲淡水在32°N断面和PN断面上的分布及其变化[J]. 海洋科学集刊,2010(50):11-22. Bai Hong,Wang Fan. Distributions and variations of the Taiwan warm current water and Changjiang diluted water along 32°N and PN sections[J]. Studia Marine Sinica,2010(50):11-22.
    Coble P G,Del Castillo C E,Avril B. Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon[J]. Deep-Sea Research Part Ⅱ:Topical Studies in Oceanography,1998,45(10/11):2195-2223.
    胡素征,李桂菊,李奕洁,等. 长江口有色溶解有机物光谱特性及其示踪溶解有机碳研究[J]. 天津科技大学学报,2015,30(3):57-61. Hu Suzheng,Li Guiju,Li Yijie,et al. Optical absorption properties of chromophoric dissolved organic matter and the tracing implication of dissolved organic carbon in the Yangtze River Estuary[J]. Journemporal distribution of particulate metal pollutants in Changjiang Estuary[潊孝輮 呍敡r獩恮e笠En鹶浩汲汯獮塭汥杮顴陡癬樠籓散孩繥呮譣乥,2009嘬崲猸堨3):251-256.
    Yang Zhifeng,Wang Ying,Shen Zhenyao,et al. Distribution and speciation of heavy metals in sediments from the mainstream,tributaries,and lakes of the Yangtze River catchment of Wuhan,China[J]. Journal of Hazardous Materials,2009,166(2/3):1186-1194.
    Zhang J,Huang W W,Wang Q. Concentration and partitioning of particulate trace metals in the Changjiang (Yangtze River)[J]. Water,Air,& Soil Pollution,1990,52(1/2):57-70.
    Benner R,Biddanda B. Photochemical transformations of surface and deep marine dissolved organic matter:effects on bacterial growth[J]. Limnology and Oceanography,1998,43(6):1373-1378.
    Song G,Xie H,Bélanger S,et al. Spectrally resolved efficiencies of carbon monoxide (CO) photoproduction in the western Canadian Arctic:particles versus solutes[J]. Biogeosciences,2013,10(6):3731-3748.
    Moran M A,Zepp R G. Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter[J]. Limnology and Oceanography,1997,42(6):1307-1316. colored dissolved organic matter concentration in the California Current[J]. Journal of Geophysical Research:Oceans (1978-2012),2001,106(C2):2517-2529.
    Keith D J,Yoder J A,Freeman S A,et al. Spatial and temporal distribution of coloured dissolved organic matter (CDOM) in Narragansett Bay,Rhode Island:implications for phytoplankton in coastal waters[J]. Estuarine,Coastal and Shelf Science,2002,55(5):705-717.
    Benner R. Chemical composition and reactivity[M]//Hansell D A,Carlson C A. Biogeochemistry of Marine Dissolved Organic Matter. New York:Academic Press,2002:59-90.
    Blough N V,Del Vecchio R. Chromophoric DOM in the coastal environment[M]//Hansell D A,Carlson C A. Biogeochemistry of Marine Dissolved Organic Matter. New York:Academic Press,2002:509-546.
    Minor E C,Pothen J,Dalzell B J,et al. Effects of salinity changes on the photodegradation and ultraviolet-visible absorbance of terrestrial dissolved organic matter[J]. Limnology and Oceanography,2006,51(5):2181-2186.
    Brinkmann T,Sartorius D,Frimmel F H. Photobleaching of humic rich dissolved organic matter[J]. Aquatic Sciences,2003,65(4):415-424.
    Molot L A,Hudson J J,Dillon P J,et al. Effect of pH on photo-oxidation of dissolved organic carbon by hydroxyl radicals in a coloured,softwater stream[J]. Aquatic Sciences,2005,67(2):189-195.
    Guo Weidong,Yang Liyang,Yu Xiangxiang,et al. Photo-production of dissolved inorganic carbon from dissolved organic matter in contrasting coastal waters in the southwestern Taiwan Strait,China[J]. Journal of Environmental Sciences,2012,24(7):1181-1188.
    王福利,郭卫东. 秋季南海珠江口和北部湾溶解有机物的光降解[J]. 环境科学学报,2010,30(3):606-613. Wang Fuli,Guo Weidong. Photodegradation of DOM in the Pearl River Estuary and the Beibu Gulf of the South China Sea in Autumn[J]. Acta Scientiae Circumstantiae,2010,30(3):606-613.
    Zwolsman J J G,Van Eck B T M,Van Der Weijden C H,et al. Geochemistry of dissolved trace metals (cadmium,copper,zinc) in the Scheldt estuary,southwestern Netherlands:impact of seasonal variability[J]. Geochimica et Cosmochimica Acta,1997,61(8):1635-1652.
    邵秘华,王正方. 长江口海域悬浮颗粒物中钴、镍、铁、锰的化学形态及分布特征研究[J]. 环境科学学报,1991,11(4):432-438. Shao Mihua,Wang Zhengfang. Fractionation of Co,Ni,Fe,and Mn in suspended particulate from Changjiang River Estuary[J]. Acta Scientiae Circumstantiae,1991,11(4):432-438.
    Porcal P,Amirbahman A,Kopácek J,et al. Experimental photochemical release of organically bound aluminum and iron in three streams in Maine,USA[J]. Environmental Monitoring and Assessment,2010,171(1/4):71-81.
    高建华,汪亚平,潘少明,等. 长江口枯水期最大浑浊带形成机制[J]. 泥沙研究,2005(5):66-73. Gao Jianhua,Wang Yaping,Pan Shaoming,et al. Formation mechanisms of turbidity maximum in Changjiang Estuary during the dry season[J]. Journal of Sediment Research,2005(5):66-73.
    刘启贞,李九发,戴志军,等. 长江口颗粒态金属污染物时空分布规律分析[J]. 海洋环境科学,2009,28(3):251-256. Liu Qizhen,Li Jiufa,Dai Zhijun,et al. Spatial and t
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1191) PDF downloads(870) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return