Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Yin Xijie, Sun Zhilei, Xu Yonghang, Li Yunhai, Shao Changwei. Measurement of sulfate reduction rate in coastal sediments of Jiulong River Estuary with a radiotracer technique[J]. Haiyang Xuebao, 2015, 37(4): 83-93. doi: 10.3969/j.issn.0253-4193.2015.04.008
Citation: Yin Xijie, Sun Zhilei, Xu Yonghang, Li Yunhai, Shao Changwei. Measurement of sulfate reduction rate in coastal sediments of Jiulong River Estuary with a radiotracer technique[J]. Haiyang Xuebao, 2015, 37(4): 83-93. doi: 10.3969/j.issn.0253-4193.2015.04.008

Measurement of sulfate reduction rate in coastal sediments of Jiulong River Estuary with a radiotracer technique

doi: 10.3969/j.issn.0253-4193.2015.04.008
  • Received Date: 2014-03-31
  • Rev Recd Date: 2014-09-23
  • Sulfate reduction rates were measured experimentally with 35SO42- in sediment of A and B cores in coastal of Jiulong River Estuary in July of 2011. A and B cores were situated in the upper estuarine coast and seaward boundary respectively,with low salinity (3-5) and high salinity (20-25). Sulfate reduction rates volume-based values ranged from 54 to 2 345 nmol/(cm3·d) in vertical profile of A core,and the highest sulfate reduction rates occurred at 20 cm depth. Sulfate reduction rates varied from 24 to 987 nmol/(cm3·d) in B core,two peaks in sulfate reduction rates profiles obviously appeared on the top 10 cm and at 78cm depth,with significantly high value of 876 nmol/(cm3·d) and 987 nmol/(cm3·d),respectively. Based on trends on the vertical profile of SO42-,methane concentration in pore water and total organic carbon,temperature and oxidation reduction potential in sediments of two cores,sulfate reduction is mainly dominated by organic mineralization in A Core,however sulfate reduction is controlled by the combination of organic matter mineralization and anaerobic methane oxidation in B Core. Meanwhile sulfate reduction rates and the vertical distribution trends of it were affected by the availability of active organic matter,temperature and SO42- concentration in the pore water in two cores. The depth-integrated sulfate reduction rates were 527.9 mmol/(m2·d) and 357.1 mmol/(m2·d) within sulfate reduction zone in A Core and B Core respectively. Sulfate reduction is one of the major processes contributing to the mineralization of organic matter in this estuary.
  • loading
  • Vairavamurthy M A,Orr W L,Manowitz B. Geochemical transformation of sedimentary sulfur: an introduction[M]//Vairavamurthy M A,Schoonen M A A. Geochemical Tranformation of Sedimentary Sulfur. Washington,DC: ACS Symposium,1995: 1-17.
    Bottrell S H,Newton R J. Reconstruction of changes in global sulfur cycling from marine sulfate isotopes[J]. Earth-Science Reviews,2006,75(1/4): 59-83.
    JØrgensen B B. The sulfur cycle of coastal marine sediment (Limfjorden,Denmark)[J]. Limnology and Oceanography,1977,22(5): 814-832.
    Kallmeyer J,Ferdelman T G,Weber A,et al. A cold chromium distillation procedure for radio labeled sulfide applied to sulfate reduction measurements[J]. Limnology and Oceanography Methods,2004,2: 171-180.
    Fossing H,JØrgensen B B. Measurement of bacterial sulfate reduction in sediments: Evaluation of a single-step chromium reduction method[J]. Biogeochemistry,1989,8(3): 205-222.
    JØrgensen B B,Fenchel T. The sulfur cycle of a marine sediment model system[J]. Marine Biology,1974,24(3): 189-201.
    Sweeney R E,Kaplan I R. Diagenetic sulfate reduction in marine sediments[J]. Marine Chemistry,1980,9(3): 165-174.
    Berner R A. Sulfate reduction and the rate of deposition of marine sediments[J]. Earth and Planetary Science Letters,1978,37(3): 492-498.
    Bowles M W,Samarkin V A,Bowles K M,et al. Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubation[J]. Geochimica et Cosmochimica Acta,2011,75(2): 500-519.
    Lee T,Hyun J H,Mok J S,et al. Organic carbon accumulation and sulfate reduction rates in slope and basin sediments of the Ulleung Basin,East/Japan Sea[J]. Geo-Marine Letters,2008,28(3): 153-159.
    Meister P,Liu B,Ferdelman T G,et al. Control of sulphate and methane distributions in marine sediments by organic matter reactivity[J]. Geochimica et Cosmochimica Acta,2013,104: 183-193.
    Al-Raei A M,Bosselmann K,Böttcher M E,et al. Seasonal dynamics of microbial sulfate reduction in temperate intertidal surface sediments: controls by temperature and organic matter[J]. Ocean Dynamics,2009,59(2): 351-370.
    Gribsholt B,Kristensen E. Benthic metabolism and sulfur cycling along an inundation gradient in a tidal Spartina anglica salt marsh[J]. Limnology and Oceanography,2003,48(6): 2151-2162.
    Thang N M,Brüchert V,Formolo M,et al. The impact of sediment and carbon fluxes on the biogeochemistry of methane and sulfur in Littoral Baltic Sea Sediments (Himmerfjrden,Sweden)[J]. Estuaries and Coasts,2013,36(1): 98-115.
    孙炳寅,经美德. 废黄河口盐沼土硫酸盐还原速率的研究[J]. 应用生态学报,1990,1(3): 248-253. Sun Bingyin, Jing Meide. A study on sulfate reduction in salt marsh near the estuary of obsolete Huanghe River[J]. Chinese Journal of Applied Ecology, 1990, 1(3):248-253.
    Wu Z J,Zhou H Y,Peng X T,et al. Rates of bacterial sulfate reduction and their response to experimental temperature changes in coastal sediments of Qi'ao Island,Zhujiang River Estuary in China[J]. Acta Oceanologica Sinica,2014,33(8): 10-17.
    程思海,陆红锋. 海洋沉积物孔隙水的制备方法[J]. 岩矿测试,2005,24(2): 102-104. Cheng Sihai, LU Hongfeng. Techniques for marine sediment pore-water sampling[J]. Rock and Mineral Analysis, 2005, 24(2):102-104.
    吴自军,周怀阳,彭晓彤,等. 甲烷厌氧氧化作用: 来自珠江口淇澳岛海岸带沉积物间隙水的地球化学证据[J]. 科学通报,2006,51(17): 2052-2059. Wu Zijun,Zhou Huaiyang,Peng Xiaotong,et al.Anaerobic oxidation of methane: Geochemical evidence from pore-water in coastal sediments of Qi'ao Island(Pearl River Estuary), southern China[J]. Chinese Science Bulletin, 2006, 51(17): 2052-2059.
    Schulz H D,Zabel M. Marine Geochemistry[M]. Berlin: Springer,2006: 198-199.
    张胜,张翠云,张云,等. 地质微生物地球化学作用的意义与展望[J]. 地质通报,2005,24(10/11): 1027-1031. Zhang Sheng, Zhang Cuiyun, Zhang Yun, et al. Geomicrobial geochemical processes: Significance and prospects[J]. Regional Geology of China, 2005, 24(10/11):1027-1031.
    Froelich P N,Klinkhammer G P,BenderM L,et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis[J]. Geochimica et Cosmochimica Acta,1979,43(7): 1075-1090.
    Canfield D E. Organic matter oxidation in marine sediments //Wollast R,Mackenzie F T,Chou L,et al. Interactions of C,N,P and S Biogeochemical Cycles and Global Change. Berlin Heidelberg: Springer-Verlag,1993: 333-363.
    Burdige D J. Geochemistry of Marine Sediments[M]. USA: Princeton University Press,2006.
    尹希杰,陈坚,郭莹莹,等. 九龙江河口沉积物中硫酸盐还原与甲烷厌氧氧化:同位素地球化学证据[J]. 海洋学报,2011,33(4): 121-128. Yin Xijie, Chen Jian, Guo Yingying, et al. Sulfate reduction and methane anaerobic oxidation: isotope geochemical evidence from the pore water of coastal sediments in the Jiulong Estuary[J]. Haiyang Xuebao, 2011,33(4),121-128.
    Wijsman J W M,Middelburg J J,Herman P M J,et al. Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea[J]. Marine Chemistry,2001,74(4): 261-278.
    尹希杰,周怀阳,杨群慧,等. 珠江口淇澳岛海岸带沉积物中硫酸盐还原和不同形态硫的分布[J]. 海洋学报,2010,32(3): 31-39. Yin Xijie, Zhou Huaiyang, Yang Qunhui, et al. Sulfate reduction and reduced sulfur speciation in the coastal sediments of Qi'ao Island in the Zhujiang Estuary in China[J]. Haiyang Xuebao, 2010, 32(3):31-39.
    Marvin-DiPasquale M C,Boynton W R,Capone D G. Benthic sulfate reduction along the Chesapeake Bay central channel. Ⅱ. Temporal controls[J]. Marine Ecology Progress Series,2003,260: 55-70.
    Beck M,Dellwig O,Liebezeit G,et al. Spatial and seasonal variations of sulphate,dissolved organic carbon,and nutrients in deep pore waters of intertidal flat sediments[J]. Estuarine,Coast Shelf Science,2008,79(2): 307-316.
    Manous J J,Gantzer C J,Stefan H G. Spatial Variation of Sediment Sulfate Reduction Rates in a Saline Lake [J]. Journal of Environmental Engineering,2007,133(12): 1106-1116.
    Edenborn H M,Silverberg N,Mucci A,et al. Sulfate reduction in deep coastal marine sediments[J]. Marine Chemistry,1987,21(4): 329-345.
    Coleman M L,Raiswell R. Source of carbonate and origin of zonation in pyritiferous carbonate concretions: evaluation of a dynamic model[J]. American Journal of Science,1995,295(3): 282-308.
    Pallud C,Cappellen P V. Kinetics of microbial sulfate reduction in estuarine sediments[J]. Geochimica et Cosmochimica Acta,2006,70(5): 1148-1162.
    Schubert C S,Ferdelman T G,Strotmann B. Organic matter composition and sulfate reduction rates in sediments off Chile[J]. Organic Geochemistry,2000,31(5): 351-361.
    Canfield D E. Sulfate reduction in deep sea sediments[J]. American Journal of Science,1991,291(2): 177-188.
    Devol A H,Ahmend S I. Are high rates of sulphate reduction associated with anaerobic oxidation of methane? [J]. Nature,1981,291(5814): 407-408.
    Pohlman J W,Ruppel C,Hutchinson D R,et al. Assessing sulfate reduction and methane cycling in a high salinity pore water system in the northern Gulf of Mexico[J]. Marine and Petroleum Geology,2008,25(9): 942-951.
    Li Q Q,Wang F P,Chen Z W,et al. Stratified active archaeal communities in the sediments of Jiulong river estuary China[J]. Frontiers in Microbiology,2012,3: 311.
    Wenzhofer F,Glud R N. Benthic carbon mineralization in the Atlantic: a synthesis based on in situ data from the last decade[J]. Deep-Sea Research,2002,49(7): 1255-1279.
    Jahnke R A. The global ocean flux of particulate organic carbon: A real distribution and magnitude[J]. Global Biogeochemical Cycles,1996,10(1): 71-88.
    Hadas O. Sulfate reduction in Lake Agmon,Israel[J]. Science of the Total Environment,2001,266(1/3): 203-209.
    Julies E M,Fuchs B M,Arnosti C,et al. Organic carbon degradation in anoxic Organic-Rich shelf sediments: Biogeochemical rates and microbial abundance[J]. Geomicrobiology Journal,2010,27(4): 303-314.
    Sawicka1 J E,JØrgensen B B,Brüchert V. Temperature characteristics of bacterial sulfate reduction in continental shelf and slope sediments[J]. Biogeosciences,2012,9(8): 3425-3435.
    Weber A,JØrgensen B B. Bacterial sulfate reduction in hydrothermal sediments of the Guaymas Basin,Gulf of California,Mexico[J]. Deep-Sea Research I,2002,49(5): 827-841.
    Treude T,Niggemann J,Kallmeyer J,et al. Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin[J]. Geochimica et Cosmochimica Acta,2005,69(11): 2767-2779.
    Bertics V J,Ziebis W. Bioturbation and the role of microniches for sulfatereduction in coastal marine sediments[J]. Environmental Microbiology,2010,12(11): 3022-3034.
    Laverman A M,Pallud C,Abell J. et al. Comparative survey of potential nitrate and sulfate reduction rates in aquatic sediments[J]. Geochimica et Cosmochimica Acta,2012,77: 474-488.
    Hines M E,Knollmeyer S L,Tugel J B. Sulfate reduction and other sedimentary biogeochemistry in a northern New England salt marsh[J]. Limnology and Oceanography,1989,34(3): 578-590.
    Maltby E,Immirzi C P. Carbon dynamics in peatlands and other wetlands soils: regional and global perspectives[J]. Chemosphere,1993,27(6): 999-1023.
    Hyun J H,Smith A C,Kostka J E. Relative contributions of sulfate-and iron(III) reduction to organic matter minrtalization and process controls in contrasting habitats of the Georgia saltmarsh[J]. Applied Geochemistry,2007,22(12): 2637-2651.
    Thamdrup B. Bacterial manganese and iron reduction in aquatic sediments[J]. Advances in Microbiology and Ecology,2000,16: 41-84.
    Weber A,Riess W,Wenzhoefer F,et al. Sulfate reduction in Black Sea sediments: In situ and laboratory radiotracer measurements from the shelf to 2000 m depth[J]. Deep-Sea Research,2001,48(9): 2073-2096.
    Bruchert V,Gorgensen B B,Neumann K,et al. Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone[J]. Geochimica et Cosmochimica Acta,2003,67(23): 4505-4518.
    Zopfi J,BöttcherM,JØrgensen B B. Biogeochemistry of sulfur and iron in Thioploca-colonized surface sediments in the upwelling area off central Chile[J]. Geochimica et Cosmochimica Acta,2008,72(3): 827-843.
    Devol A H,Anderson J J,Kuivila K,et al. A model for coupled sulfate reduction and methane oxidation in the sediments of Saanich Inlet[J]. Geochimica et Cosmochimica Acta,1984,48(5): 993-1004.
    Iversen N,JØrgensen B B. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark)[J]. Limnology and Oceanography,1985,30(5): 944-955.
    Alperin M J,Reeburgh W S,Whiticar M J. Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation[J]. Global Biogeochemical Cycles,1988,2(3): 279-288.
    Thode-Andersen S,JØrgensen B B. Sulfate reduction and the formation of 35S-labeled FeS,FeS2,and So in coastal marine sediments[J]. Limnology and Oceanography,1989,34(5): 793-806.
    JØrgensen B B,Bang M,Blackburn H T. Anaerobic mineralization in marine sediments from the Baltic Sea-North Sea transition[J]. Marine Ecology Progress Series,1990,59: 39-54.
    Oenema O. Sulfate reduction in fine-grained sediments in the Eastern Scheldt,southwest Netherlands[J]. Biogeochemistry,1990,9(1): 53-74.
    Roden E E,Tuttle J H. Inorganic sulfur cycling in mid and lower Chesapeake Bay sediments[J]. Marine Ecology Progress Series,1993,93: 101-118.
    Fossing H,Ferdelman T G,Berg P. Sulfate reduction and methane oxidation in continental margin sediments influenced by irrigation (South-East Atlantic off Namibia) [J]. Geochimica et Cosmochimica Acta,2000,64(5): 897-910.
    JØrgensen B B,Weber A,Zopfi J. Sulfate reduction and anaerobic methane oxidation in Black Sea sediments[J]. Deep-Sea Research,2001,48(9): 2097-2120.
    Mazumdar A,Paropkari A L,Borole D V,et al. Pore-water sulfate concentration profiles of sediment cores from Krishna-Godavari and Goa basins,India[J]. Geochemical Journal,2007,41: 259-269.
    Bowles M W,Samarkin V A,Bowles K M. Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubation[J]. Geochimica et Cosmochimica Acta,2011,75(2): 500-519.
    Crill P M,Martens C S. Biogeochemical cycling in an organic-rich coastal marine basin. 6. Temporal and spatial variations in sulfate reduction rates[J]. Geochimica et Cosmochimica Acta,1987,51(5): 1175-1186.
    Takii S,Tanaka H,Kohata K,et al. Seasonal changes in sulfate reduction in sediments in the Inner Part of Tokyo Bay[J]. Microbes and Environments,2002,17(1): 10-17.
    Panutrakul S,Monteny F,Baeyens W,et al. Seasonal variations in sediment sulfur cycling in the Ballastplaat Mudflat,Belgium[J]. Estuaries,2001,24(2): 257-265.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1609) PDF downloads(1445) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return