Citation: | Deng Weizhu, Wu Jiaxue, Liu Huan, Ren Jie, Yang Mingming, Zhang Yunbo. ADV-based acoustical sediment inversion and diffusion mechanism in the Pearl River Estuary[J]. Haiyang Xuebao, 2014, 36(7): 57-69. doi: 10.3969/j.issn.0253-4193.2014.07.007 |
Instrumented tripod observations of bottom boundary layer flows and sediment transport were conducted in the 2012 flood season in the Pearl River Estuary,South China. An inversion of high-frequency sediment concentration was performed based on the signal-to-noise ratio of the acoustical Doppler velocimeter with a sampling frequency of 64 Hz. Sediment concentration,upward flux of sediment diffusion,eddy viscosity and sediment diffusivity are highly tide-affected,with large values occurring during peak tides,and small ones during slack tides. Settling velocity of sediment particles is dependent on the power of sediment concentration,rather than linearly on sediment concentration. The analyses of turbulence bursting events demonstrated that ejection and sweep are the major momentum source of sediment diffusion. The sediment diffusion is predominately controlled by the amplitude of bursting events,irrespectively of the occurrence number and duration of turbulence events. The large-amplitude bursting events were found to be responsible for upward sediment diffusion.
Thorne P D, Hanes D M. A review of acoustic measurement of small-scale sediment process[J]. Continental Shelf Research, 2002, 22: 603-632.
|
Holdaway G P, Thorne P D, Flatt D, et al. Comparison between ADCP and transmissometer measurements of suspended sediment concentration[J]. Continental Shelf Research, 1999, 19: 421-441.
|
Ha H K. Acoustic measurements of cohesive sediment transport: suspension to consolidation[M]. The College of William and Mary in Virginia, 2008:55-89.
|
Salehi M, Strom K B. Using velocimeter signal to noise ratio as surrogate measure of suspended mud concentration[J]. Continental Shelf Research, 2011, 31: 1020-1032.
|
程鹏, 高抒. ADCP测量悬沙浓度的可行性分析和现场标定[J]. 海洋与湖沼, 2001, 32(2): 168-174.
|
吴加学, 张叔英, 任来法. 长江口北槽抛泥流速与悬沙浓度时空分布观测[J]. 海洋学报, 2003, 25(4): 91-103.
|
高建华, 汪亚平, 王爱军. ADCP在长江口悬沙输运观测中的应用[J]. 地理研究, 2004, 23(4): 455-462.
|
Wu J X, Liu J T, Shen H T, et al. Dispersion of disposed dredged slurry in the meso-tidal Changjiang (Yangtze River) Estuary[J]. Estuarine, Coastal and Shelf Science, 2006, 70: 663-672.
|
Dyer K R. Coastal and estuarine sediment dynamics[M]. Chichester, 1986:55-81.
|
Nielsen P. Coastal bottom boundary layers and sediment transport[J]. Singapore, World Scientific, 1992: 340.
|
Rose C P, Thorne P D. Measurements of suspended sediment transport parameters in a tidal estuary[J]. Continental Shelf Research, 2001, 21: 1551-1575.
|
Voulgaris G, Meyers S T. Temporal variability of hydrodynamics, sediment concentration and sediment settling velocity in a tidal creek[J]. Continental Shelf Research, 2004, 24: 1659-1683.
|
Anderson T J, Fredsoe J, Pejrup M. In situ estimation of erosion and deposition thresholds by Acoustic Doppler Velocimeter (ADV)[J]. Estuarine, Coastal and Shelf Science, 2007, 75: 327-336.
|
Ha H K, Maa J P-Y. Effects of suspended sediment concentration and turbulence on settling velocity of cohesive sediment[J]. Geosciences Journal, 2010, 14(2): 163-171.
|
周济福, 李家春. 河口混合与泥沙输运[J]. 力学学报, 2000, 32(5): 523-531.
|
曹祖德, 孔令双, 焦桂英. 波、流共同作用下的泥沙起动[J]. 海洋学报, 2003, 25(3): 113-119.
|
白玉川, 许栋, 张雪岩. 冲积床面上明渠水流湍流特征及其与底层泥沙起动关系的试验研究[J]. 自然科学进展, 2005, 15(4): 439-445.
|
赵焕庭. 珠江河口演变[M]. 北京: 海洋出版社, 1990: 357.
|
Wu J X, Shen H T. Estuarine bottom sediment transport based on "McLaren Model": A case study of Huangmaohai Estuary, South China[J]. Estuarine, Coastal and Shelf Science, 1999, 49(2): 265-279.
|
Liu H, Wu C Y, Xu W M, et al. Contrasts between estuarine and river systems in near-bed turbulent flows in the Zhujiang (Pearl River) Estuary, China[J]. Estuarine, Coastal and Shelf Science, 2009, 83: 591-601.
|
Wu J X, Liu H, Ren J, et al. Cyclonic spirals in tidally accelerating bottom boundary layers in the Zhujiang (Pearl River) Estuary[J]. Journal of Physical Oceanography, 2011, 41(6): 1209-1226.
|
鲁远征, 吴加学, 刘欢. 河口底边界层湍流观测后处理技术方法分析[J]. 海洋学报, 2012, 34(5): 39-49.
|
Deines K L. Backscatter estimation using broadband acoustic Doppler current profilers[C]//Proceedings of the IEEE sixth conference on current measurement. IEEE, 1999: 249-253.
|
Urick R J. The absorption of sound in irregular particles[J]. Journal of Acoustical Society of America, 1948, 20(3): 283-289.
|
Anderson V C. Sound scattering from a fluid sphere[J]. Journal of Acoustical Society of America, 1950, 22: 426-431.
|
Medwin H, Clay C S. Fundamentals of Acoustical Oceanography[M]. Academic Press, 1998:319.
|
Salehi M, Strom K B. Relationship between acoustic backscatter strength and suspended sediment concentration using a 6 MHz Nortek Vector Velocimeter[C]//Proceeding of the World Environmental and Water Resources Congress: Challenges of Change, ASCE, 2010.
|
Fugate D C, Friedrichs C T. Determining concentration and fall velocity of estuarine particle population using ADV, OBS and LISST[J]. Continental Shelf Research, 2002, 22: 1867-1886.
|
Maa J P, Kwon J I. Using ADV for cohesive sediment settling velocity measurements[J]. Estuarine, Coastal and Shelf Science, 2007, 73: 351-354.
|
Lu S S, Willmarth W W. Measurements of the structure of the Reynolds stress in a turbulent boundary layer[J]. Journal of Fluid Mechanism, 1973, 60: 481-511.
|
Sumer B M, Oguz B. Particle motion near the bottom of turbulent flow in the open channel[J]. Journal of Fluid Mechanism, 1978, 86(1): 109-127.
|
Ashida K, Fujita M. Stochastic model for particle suspension in open channels[J]. Journal of Hydroscience and Hydraulic Engineering, 1986, 4(2): 21-46.
|
Kim H T, Kline S J, Reynolds W C. The production of turbulence near a smooth wall in a turbulent boundary layer[J]. Journal of Fluid Mechanism, 1971, 50(1): 133-160.
|
Narasimha R, Rudra K S, Prabhu A. Turbulent flux events in a nearly neutral atmospheric boundary layer[J]. Philosophical Translations of Royal Society, 2007, 365(1852): 841-858.
|
Trevethan M, Chanson H. Turbulence and turbulent flux events in a small estuary[J]. Environmental Fluid Mechanics, 2010, 10(3): 345-368.
|