Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
LIU Yu, WEI Jie, LI Yanping. Effect of azelaic acid of mangrove root exudates on Prorocentrum micans[J]. Haiyang Xuebao, 2013, 35(3): 239-245. doi: 10.3969/j.issn.0253-4193.2013.03.027
Citation: LIU Yu, WEI Jie, LI Yanping. Effect of azelaic acid of mangrove root exudates on Prorocentrum micans[J]. Haiyang Xuebao, 2013, 35(3): 239-245. doi: 10.3969/j.issn.0253-4193.2013.03.027

Effect of azelaic acid of mangrove root exudates on Prorocentrum micans

doi: 10.3969/j.issn.0253-4193.2013.03.027
  • Received Date: 2013-01-08
  • Rev Recd Date: 2013-03-21
  • It is generally recognized that plant rhizosphere microbial biomass is higher than that of non-rhizosphere, and this is related to a variety of substances which secreted by plant roots. Different species of mangrove plant had different degree of eutrophication and with higher phytoplankton biomass, and this was estimated at least to be partly related with the mangrove plant root exudates (REs) and the control effect on the forest organisms. Mangrove plant root exudates are one of the key factors in modulating mangrove ecological effects. Azelaic acid is a kind of two carboxylic acids detected in mangrove plants root exudates for the first time. The preliminary indoor mechanism experiment of the effect of mangrove plant root exudates on algae was conducted by using azelaic acid and alga Prorocentrum micans, the alga was cultivated with different concentrations of azelaic acid. Algal density, shape, intracellular glycerol content, pigment content and other indexes were detected in the algal growth period. The main results are as follows: in low concentration of 0.5-1.5 mg/L, azelaic acid could be used as the nutrients to be absorbed by the algal cells. While at a higher concentration of 2 mg/L and 4 mg/L, azelaic acid mainly expressed as allelopathic inhibition. Cell membrane lipid peroxidation lead to intracellular glycerol content increased, Chromatoplast produced strong stress response, the pigment synthesis was increased, especially peridinin content. More intracellular substances produced through cell metabolisms, such as starch and lipid droplets, and resulting in enlargement of vacuoles. Chromatoplast is one of the most important organelle to response stress and to resist adversity. The ecological effect of azelaic acid was mainly classified to allelopathy as for its low concentration and higher inhibition effect. Mangrove plant root exudates has a regulatory role on forest ecology. In situ field test on the mixed effects of mangrove plant root exudates should be strengthened in the future.
  • loading
  • 陈长平,高亚辉,林鹏. 深圳福田红树林保护区浮游植物群落的季节变化及其生态学研究[J]. 厦门大学学报:自然科学版,2005,44(6):11-15.
    王雨,卢昌义,谭凤仪,等. 深圳红树林水体浮游植物多样性与营养状态评价[J]. 海洋环境科学,2010,29(1):17-26.
    黄齐欣,刘玉,黄少峰,等. 无瓣海桑(Sonneratia apetala)对浮游微藻群落结构及生态功能的影响研究[J]. 中山大学学报:自然科学版,2011,50(4):55-59.
    Chen L Y, Peng S L, Chen B M, et al. Effects of aqueous extracts of 5 mangrove spp. on cabbage germination and hypocotyl growth of Kandelia candel[J]. Allelopathy Jouranl, 2009, 23(2): 469-476.
    Bertin C, Yang X, Weston L A. The role of root exudates and allelochemicals in the rhizosphere[J]. Plant Soil, 2003, 256(1): 67-83.
    Ferrier M D, Butler S B R, Terlizzi D E, et al. The effects of barley straw (Hordeum vulgare) on the growth of freshwater algae[J]. Bioresource Technology, 2005, 96:1788-1795.
    Tang C S, Young C C. Collection and identification of allelopathic compounds from the undisturbed root system of bigalta limpograss (Hemarthria altissima)[J]. Plant Physiology, 1982, 69(1): 155-160.
    Wojcik-wojtkowiak D, Politycka B, Schneider M, et al. Phenolic substances as allelopathic agents arising during the degradation of rye (Secale cereale) tissues[J]. Plant and Soil, 1990, 124: 143-147.
    Chen Z L, Yang W D, Liu J S, et al. Allelopathic effects of Eichhornia crassipes roots on Alexandrium tamarense[J]. Acta Hydrobiologica Sinica, 2005, 29(3): 313-317.
    Gross M E, Meyer H, Schilling G. Release and ecological impact of algicidal hydrolysable polyphenols in Myriophyllum spicatum[J]. Phytochemistry, 1996, 41(1): 133-138.
    Jin Z H, Zhuang Y Y, Dai S G. Isolation and identification of extracts of Eichhornia crassipes and their allelopathic effects on algae[J]. Bulletin of Environmental Contamination and Toxicology, 2003, 71: 1048-1052.
    Li F M, Hu H Y. Isolation and characterization of a novel antialgal allelochemical from Phragmites communis[J]. Applied and Environmental Microbiology, 2005, 71: 6545-6553.
    丁惠君,张维昊,王超,等. 菖蒲对几种常见藻类的化感作用研究[J]. 环境科学与技术,2007,30(6):20-22.
    门玉洁,胡洪营,李锋民. 芦苇化感组分对斜生栅藻(Scenedesmus obliquus)生长特性的影响[J]. 生态环境,2006,15(5):925-929.
    卢豪良,严重玲. 秋茄(Kandelia candel(L))根系分泌低分子量有机酸及其对重金属生物有效性的影响[J]. 生态学报,2007,27(10):4173-4181.
    David L. Jones, Peter R. Darrah. Role of root derived organic acids in the mobilization of nutrients from the rhizosphere[J]. Plant and Soil, 1994, 166: 247-257.
    Lena S, Andrew G O, Douglas L G, et al. Organic acid behavior in a calcareous soil implication for rhizosphere nutrient cycling[J]. Soil Biology & Biochemistry, 2005, 37(11): 2046-2054.
    Mucha A P, Almeida C M R, Bordalo A A, et al. LMWOA (low molecular weight organic acid) exudation by salt marsh plants: Natural variation and response to Cu contamination[J]. Estuarine, Coastal and Shelf Science, 2010, 88: 63-67.
    徐佳佳,龙盛京. 桐花化学成分的研究[J]. 华西药学杂志,2009,24(2):120-123.
    Zhang D J, Wu J, Zhang S, et al. Oleanane triterpenes from Aegiceras comiculatam[J]. Fitoterapia, 2005, 76(1): 131-133.
    Lu H L, Yan C L, Liu J C. Low-molecular-weight organic acids exuded by Mangrove (Kandelia candel(L.)Druce) roots and their effect on cadmium species change in the rhizosphere[J]. Environmental and Experimental Botany, 2007, 61: 159-166.
    Breathnach A S. Melanin hyper pigmentation of skin: melasma, topical treatment with azelaic acid, and other therapies[J]. Cutis, 1996, 57(1 sup.): 36-45.
    Li R,Liu Y, Chen G Z, et al. Physiological responses of the alga Cyclotella caspia to bisphenol A exposure[J]. Botanica Marina, 2008, 51(5):360-369.
    Liu Y, Luan T G, Lu N N, et al. Toxicity of Fluoranthene and its Biodegradation by Cyclotella caspia Alga[J]. Journal of Integrative Plant Biology, 2006,2. 48(2):169-180.
    Ben-Amotz A, Avron M. The role of glycerol in the osmotic regulation of the halophilic alga Dunaliella parva[J]. Plant Physiol, 1973, 41: 875-878.
    周丽,孟祥红,刘成圣,等. 渗透胁迫对杜氏盐藻胞内甘油含量及相关酶活性影响[J]. 植物学通报,2006,23(2):145-151.
    严小军,范晓,娄清香,等. 海藻中类胡萝卜素的提取及含量测定[J]. 海洋科学集刊,2001,43:108-114.
    Katsuya A, Hiroaki H, Morio H. Accumulation and antioxidant activity of secondary carotenoids in the aerial microalga Coelastrella striolata var. multistriata[J]. Food chemsitry, 2007, 100: 656-66.
    韩博平,韩志国,付翔. 藻类光合作用机理与模型[M]. 北京:科学出版社,2003:3-21.
    Rowan K S. Photosynthetic Pigments of Algae[M]. Cambridge: Cambridge University Press, 1989: 214-224.
    沈宏,周培疆. 环境有机污染物对藻类生长作用的研究进展[J]. 水生生物学报,2002,26(5):529-535.
    孙颖颖,刘筱潇,阎斌伦,等. 对羟基苯甲酸对2种赤潮微藻生长的影响[J]. 环境科学与技术,2010,33(7):36-39.
    袁玉信. 液泡在植物生命活动中的作用[J]. 生物学通报, 1992(7):24-26.
    钱树本, 刘东艳, 孙军. 海藻学[M]. 青岛:中国海洋大学出版社, 2005.
    [35 余秉琦,诸葛健. 酵母细胞对高渗环境的适应与胞内甘油累积[J]. 中国生物工程杂志,2003,23(2):25-28.
    李锋民,胡洪营,种云霄,等. 芦苇化感物质对藻类细胞膜选择透性的影响[J]. 环境科学,2007,28(11):2453-2456.
    Rise M, Cohen E, Vishkautsan M, et al. Accumulation of secondary carotenoids in Chlorella Zofingiensis[J]. Journal of Plant Physiology, 1994, 144: 287-292.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1771) PDF downloads(1126) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return