Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Wang Yonggang, Wei Zexun, Fang Guohong, Chen Haiying, Gao Xiumin. Numerical study of tides in the Indonesia seas[J]. Haiyang Xuebao, 2014, 36(3): 1-8. doi: 10.3969/J.ISSN.0253-4193.2014.03.001
Citation: Wang Yonggang, Wei Zexun, Fang Guohong, Chen Haiying, Gao Xiumin. Numerical study of tides in the Indonesia seas[J]. Haiyang Xuebao, 2014, 36(3): 1-8. doi: 10.3969/J.ISSN.0253-4193.2014.03.001

Numerical study of tides in the Indonesia seas

doi: 10.3969/J.ISSN.0253-4193.2014.03.001
  • Received Date: 2013-07-26
  • Rev Recd Date: 2013-08-05
  • Based on the ROMS model, the high resolution tidal model for principal tidal constituents M2, S2, K1 and O1 in the Indonesias Sea (15.52°S~7.13°N,110.39°~134.15°E) is established. The model results are compared with observations at 29 TOPEX/Poseidon (T/P) crossover points, showing satisfactory agreement. The root-mean-square (RMS) deviations in amplitude and phase-lag are respectively 3.4 cm and 5.9° for M2, 1.7 cm and 6.3° for S2, 1.1 cm and 5.8° for K1 and 1.2 cm and 4.4° for O1. The vector RMS deviations for M2, S2, K1 and O1 are 3.8 cm, 2.4 cm, 1.9 cm and 1.3 cm respectively. The relative deviation of numerical results is about 10%. Based on the numerical results, the tidal characteristics and tidal energy flux are analyzed. Except for the Java Sea, the Indonesian seas are mainly irregular semidiurnal tide areas. The diurnal tidal energy propagates mainly from the Pacific Ocean to the Indonesian seas, however the semidiurnal tidal energy propagates from the Indian Ocean to the Indonesian seas.
  • loading
  • Hatayama T, Awaji T, Akitomo K. Tidal currents in the Indonesian seas and their effect on transport and mixing[J]. Journal of Geophysical Research, 1996, 101(C5): 12353—12373.
    Ray R D, Egbert G D, Erofeeva S Y. A brief overview of tides in the Indonesian seas[J]. Oceanography, 2005, 18(4): 74—79.
    Wyrtki K. Physical Oceanography of the Southeast Asian Waters[C]//Naga Report 2. Scripps Institution of Oceanography, La Jolla, California, 1961:195.
    Schwiderski E W. Global ocean tides, Part Ⅱ: The semidiurnal principal lunar tide (M2), atlas of tidal charts and maps[C]//Tech. Rep. NSWC TR 79-414, Naval Surface Weapons Center, 1979:49.
    Mihardja D K. Energy and momentum budget of the tides in Indonesian Waters[D]. Hamburg: Univ. of Hanburg, 1991.
    Mazzega P, Bergé M. Ocean tides in the Asian semi-enclosed seas from TOPEX/POSEIDON[J]. Journal of Geophysical Research, 1994, 99(C12): 24867—24881.
    Egbert G D, Erofeeva S Y. Efficient inverse modeling of barotropic ocean tides[J]. Journal of Atmospheric Oceanic Technology, 2002, 19: 183—204.
    Robertson R, Ffield A. M2 bartroclinic tides in the Indonesian seas[J]. Oceanography, 2005, 18(4): 62—73.
    Robertson R, Ffield A. Baroclinic tides in the Indonesian seas: Tidal fields and comparisons to observations[J]. Journal of Geophysical Research, 2008, 113, C07031, doi: 10.1029/2007JC004677.
    滕飞, 方国洪, 王新怡, 等. 印度尼西亚近海潮汐潮流的数值模拟[J]. 海洋科学进展, 2013, 31(2): 166—179.
    Song Y T, Haidvogel D. A semi-implicit ocean circulation model using a generalized topography following coordinate system[J]. Journal of Computational Physics, 1994, 115: 228—248.
    Robertson R. Barotropic and Baroclinic tides in the Ross Sea[J]. Antarctic Science, 2005, 17: 107—120.
    Egbert G D, Bennett A F, Foreman M G G. TOPEX/POSEIDON tides estimated using a global inverse model[J].Journal of Geophysical Research, 1994, 99(C12): 24821—24852.
    Fang Guohong, Wang Yonggang, Wei Zexun, et al. Empirical cotidal charts of the Bohai, Yellow, and East China Seas from 10 years of TOPEX/Poseidon altimetry[J]. Journal of Geophysical Research, 2004, 109, C11006, doi: 10.1029/2004JC002484.
    Egbert G D, Ray R D. Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data[J]. Nature, 2000, 405: 775—778.
    Egbert G D, Ray R D. Estimates of M2 tidal energy dissipation from Topex/Poseidon altimeter data[J]. Journal of Geophysical Research, 2001, 106(C10): 22475—22502.
    Niwa Y, Hibiya T. Numerical study of the spatial distribution of the M2 internal tide in the Pacific Ocean[J]. Journal of Geophysical Research, 2001, 106(C10): 22441—22449.
    Simmons H L, Hallberg R W, Arbic B K. Internal wave generation in a global baroclinic tide model[J]. Deep-Sea Research Ⅱ, 2004, 51(3):3043—3068.
    Ffield A, Gordon A L. Vertical mixing in the Indonesian thermocline[J]. Journal of Physical Oceanography, 1992, 22: 184—195.
    Ffield A, Gordon A L. Tidal mixing signatures in the Indonesian Seas[J]. Journal of Physical Oceanography, 1996, 26: 1924—1937.
    Gordon A L, Ffield A, Ilahude A G. Thermocline of the Flores and Banda Seas[J]. Journal of Geophysical Research, 1994, 99(C9): 18235—18242.
    Schiller A. Effects of explicit tidal forcing in an OGCM on the water-mass structure and circulation in the Indonesian throughflow region[J]. Ocean Modelling, 2004, 6: 31—49.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1488) PDF downloads(1229) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return