| Citation: | Longxing Zhu,Xiaofan Luo,Wei Zhao, et al. Development and evaluation of a regional high-resolution coupled ocean-sea ice-ecosystem model for the Ross Sea, Antarctica[J]. Haiyang Xuebao,2026, 48(x):1–18 doi: 10.12284/hyxb20260000 |
| [1] |
Arrigo K R, van Dijken G L, Bushinsky S. Primary production in the Southern Ocean, 1997-2006[J]. Journal of Geophysical Research: Oceans, 2008, 113(C8): C08004.
|
| [2] |
Goffart A, Catalano G, Hecq J H. Factors controlling the distribution of diatoms and Phaeocystis in the Ross Sea[J]. Journal of Marine Systems, 2000, 27(1/3): 161−175.
|
| [3] |
Smith Jr W O, Ainley D G, Arrigo K R, et al. The oceanography and ecology of the Ross Sea[J]. Annual Review of Marine Science, 2014, 6(1): 469−487. doi: 10.1146/annurev-marine-010213-135114
|
| [4] |
Arrigo K R, van Dijken G, Long M. Coastal Southern Ocean: a strong anthropogenic CO2 sink[J]. Geophysical Research Letters, 2008, 35(21): L21602. doi: 10.1029/2008gl035624
|
| [5] |
Arrigo K R, Weiss A M, Smith Jr W O. Physical forcing of phytoplankton dynamics in the southwestern Ross Sea[J]. Journal of Geophysical Research: Oceans, 1998, 103(C1): 1007−1021. doi: 10.1029/97JC02326
|
| [6] |
Smith Jr W O. Primary productivity measurements in the Ross Sea, Antarctica: a regional synthesis[J]. Earth System Science Data, 2022, 14(6): 2737−2747. doi: 10.5194/essd-14-2737-2022
|
| [7] |
Schoemann V, Becquevort S, Stefels J, et al. Phaeocystis blooms in the global ocean and their controlling mechanisms: a review[J]. Journal of Sea Research, 2005, 53(1/2): 43−66. doi: 10.1016/j.seares.2004.01.008
|
| [8] |
Sweeney C, Hansell D A, Carlson C A, et al. Biogeochemical regimes, net community production and carbon export in the Ross Sea, Antarctica[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2000, 47(15/16): 3369−3394. doi: 10.1016/s0967-0645(00)00072-2
|
| [9] |
Richardson K, Beardall J, Raven J A. Adaptation of unicellular algae to irradiance: an analysis of strategies[J]. New Phytologist, 1983, 93(2): 157−191. doi: 10.1111/j.1469-8137.1983.tb03422.x
|
| [10] |
van Hilst C M, Smith Jr W O. Photosynthesis/irradiance relationships in the Ross Sea, Antarctica, and their control by phytoplankton assemblage composition and environmental factors[J]. Marine Ecology Progress Series, 2002, 226: 1−12. doi: 10.3354/meps226001
|
| [11] |
Alderkamp A C, van Dijken G L, Lowry K E, et al. Effects of iron and light availability on phytoplankton photosynthetic properties in the Ross Sea[J]. Marine Ecology Progress Series, 2019, 621: 33−50. doi: 10.3354/meps13000
|
| [12] |
Smith W O, Nelson D M. Phytoplankton bloom produced by a receding ice edge in the Ross Sea: spatial coherence with the density field[J]. Science, 1985, 227(4683): 163−166. doi: 10.1126/science.227.4683.163
|
| [13] |
McGillicuddy Jr D J, Sedwick P N, Dinniman M S, et al. Iron supply and demand in an Antarctic shelf ecosystem[J]. Geophysical Research Letters, 2015, 42(19): 8088−8097. doi: 10.1002/2015GL065727
|
| [14] |
Kustka A B, Kohut J T, White A E, et al. The roles of MCDW and deep water iron supply in sustaining a recurrent phytoplankton bloom on central Pennell Bank (Ross Sea)[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2015, 105: 171−185. doi: 10.1016/j.dsr.2015.08.012
|
| [15] |
Marsay C M, Barrett P M, McGillicuddy Jr D J, et al. Distributions, sources, and transformations of dissolved and particulate iron on the Ross Sea continental shelf during summer[J]. Journal of Geophysical Research: Oceans, 2017, 122(8): 6371−6393. doi: 10.1002/2017JC013068
|
| [16] |
Nissen C, Vogt M. Factors controlling the competition between Phaeocystis and diatoms in the Southern Ocean and implications for carbon export fluxes[J]. Biogeosciences, 2021, 18(1): 251−283. doi: 10.5194/bg-18-251-2021
|
| [17] |
Zhang Yongli, Zhao Wei, Wei Hao, et al. Iron limitation and uneven grazing pressure on phytoplankton co-lead the seasonal species succession in the Ross Ice Shelf Polynya[J]. Journal of Geophysical Research: Oceans, 2023, 128(3): e2022JC019026. doi: 10.1029/2022JC019026
|
| [18] |
Arteaga L A, Boss E, Behrenfeld M J, et al. Seasonal modulation of phytoplankton biomass in the Southern Ocean[J]. Nature Communications, 2020, 11(1): 5364. doi: 10.1038/s41467-020-19157-2
|
| [19] |
Parkinson C L. A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(29): 14414−14423. doi: 10.3410/f.736084233.793562060
|
| [20] |
DuVivier A K, Molina M J, Deppenmeier A L, et al. Projections of winter polynyas and their biophysical impacts in the Ross Sea Antarctica[J]. Climate Dynamics, 2024, 62(2): 989−1012. doi: 10.1007/s00382-023-06951-z
|
| [21] |
Castagno P, Falco P, Dinniman M S, et al. Temporal variability of the Circumpolar Deep Water inflow onto the Ross Sea continental shelf[J]. Journal of Marine Systems, 2017, 166: 37−49. doi: 10.1016/j.jmarsys.2016.05.006
|
| [22] |
Montes-Hugo M, Doney S C, Ducklow H W, et al. Recent changes in phytoplankton communities associated with rapid regional climate change along the western Antarctic Peninsula[J]. Science, 2009, 323(5920): 1470−1473. doi: 10.1126/science.1164533
|
| [23] |
Smith Jr W O, Sedwick P N, Arrigo K R, et al. The Ross Sea in a sea of change[J]. Oceanography, 2012, 25(3): 90−103. doi: 10.5670/oceanog.2012.80
|
| [24] |
Porter D F, Springer S R, Padman L, et al. Evolution of the seasonal surface mixed layer of the Ross Sea, Antarctica, observed with autonomous profiling floats[J]. Journal of Geophysical Research: Oceans, 2019, 124(7): 4934−4953. doi: 10.1029/2018JC014683
|
| [25] |
Jacobs S S, Giulivi C F, Dutrieux P. Persistent Ross Sea freshening from imbalance West Antarctic ice shelf melting[J]. Journal of Geophysical Research: Oceans, 2022, 127(3): e2021JC017808. doi: 10.1029/2021JC017808
|
| [26] |
Smith Jr W O, Dinniman M S, Hofmann E E, et al. The effects of changing winds and temperatures on the oceanography of the Ross Sea in the 21st century[J]. Geophysical Research Letters, 2014, 41(5): 1624−1631. doi: 10.1002/2014GL059311
|
| [27] |
Wang Zhaomin. On the response of Southern Hemisphere subpolar gyres to climate change in coupled climate models[J]. Journal of Geophysical Research: Oceans, 2013, 118(3): 1070−1086. doi: 10.1002/jgrc.20111
|
| [28] |
Sullivan C W, Arrigo K R, McClain C R, et al. Distributions of phytoplankton blooms in the Southern Ocean[J]. Science, 1993, 262(5141): 1832−1837. doi: 10.1126/science.262.5141.1832
|
| [29] |
Peloquin J A, Smith Jr W O. Phytoplankton blooms in the Ross Sea, Antarctica: interannual variability in magnitude, temporal patterns, and composition[J]. Journal of Geophysical Research: Oceans, 2007, 112(C8): C08013. doi: 10.1029/2006jc003816
|
| [30] |
Smith Jr W O, Asper V, Tozzi S, et al. Surface layer variability in the Ross Sea, Antarctica as assessed by in situ fluorescence measurements[J]. Progress in Oceanography, 2011, 88(1/4): 28−45. doi: 10.1016/j.pocean.2010.08.002
|
| [31] |
Arrigo K R, Robinson D H, Worthen D L, et al. Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean[J]. Science, 1999, 283(5400): 365−367. doi: 10.1126/science.283.5400.365
|
| [32] |
Liu Xiao, Smith Jr W O. Physiochemical controls on phytoplankton distributions in the Ross Sea, Antarctica[J]. Journal of Marine Systems, 2012, 94: 135−144. doi: 10.1016/j.jmarsys.2011.11.013
|
| [33] |
Bolinesi F, Saggiomo M, Ardini F, et al. Spatial-related community structure and dynamics in phytoplankton of the Ross Sea, Antarctica[J]. Frontiers in Marine Science, 2020, 7: 574963. doi: 10.3389/fmars.2020.574963
|
| [34] |
Maier-Reimer E. Geochemical cycles in an ocean general circulation model. Preindustrial tracer distributions[J]. Global Biogeochemical Cycles, 1993, 7(3): 645−677. doi: 10.1029/93GB01355
|
| [35] |
Six K D, Maier-Reimer E. Effects of plankton dynamics on seasonal carbon fluxes in an ocean general circulation model[J]. Global Biogeochemical Cycles, 1996, 10(4): 559−583. doi: 10.1029/96GB02561
|
| [36] |
Friedlingstein P, Dufresne J L, Cox P M, et al. How positive is the feedback between climate change and the carbon cycle?[J]. Tellus B, 2003, 55(2): 692−700. doi: 10.3402/tellusb.v55i2.16765
|
| [37] |
Pasquer B, Metzl N, Goosse H, et al. What drives the seasonality of air-sea CO2 fluxes in the ice-free zone of the Southern Ocean: a 1D coupled physical-biogeochemical model approach[J]. Marine Chemistry, 2015, 177(Pt 3): 554-565.
|
| [38] |
Pondaven P, Fravalo C, Ruiz-Pino D, et al. Modelling the silica pump in the Permanently Open Ocean Zone of the Southern Ocean[J]. Journal of Marine Systems, 1998, 17(1/4): 587−619. doi: 10.1016/s0924-7963(98)00066-9
|
| [39] |
Martin J H, Gordon R M, Fitzwater S E. Iron in Antarctic waters[J]. Nature, 1990, 345(6271): 156−158. doi: 10.1038/345156a0
|
| [40] |
Lancelot C, Hannon E, Becquevort S, et al. Modeling phytoplankton blooms and carbon export production in the Southern Ocean: dominant controls by light and iron in the Atlantic sector in Austral spring 1992[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2000, 47(9): 1621−1662. doi: 10.1016/S0967-0637(00)00005-4
|
| [41] |
Pasquer B, Laruelle G, Becquevort S, et al. Linking ocean biogeochemical cycles and ecosystem structure and function: results of the complex SWAMCO-4 model[J]. Journal of Sea Research, 2005, 53(1/2): 93−108. doi: 10.1016/j.seares.2004.07.001
|
| [42] |
Kaufman D E, Friedrichs M A M, Smith Jr W O, et al. Climate change impacts on southern Ross Sea phytoplankton composition, productivity, and export[J]. Journal of Geophysical Research: Oceans, 2017, 122(3): 2339−2359. doi: 10.1002/2016JC012514
|
| [43] |
Kwon Y S, La H S, Jung J, et al. Exploring the roles of iron and irradiance in dynamics of diatoms and Phaeocystis in the Amundsen Sea continental shelf water[J]. Journal of Geophysical Research: Oceans, 2021, 126(3): e2020JC016673. doi: 10.1029/2020JC016673
|
| [44] |
Kwon Y S, La H S, Kang H W, et al. A regional-scale approach for modeling primary production and biogenic silica export in the Southern Ocean[J]. Environmental Research, 2023, 217: 114811. doi: 10.1016/j.envres.2022.114811
|
| [45] |
Wang Shanlin, Moore J K. Incorporating Phaeocystis into a Southern Ocean ecosystem model[J]. Journal of Geophysical Research: Oceans, 2011, 116(C1): C01019.
|
| [46] |
Wang Shanlin, Moore J K. Variability of primary production and air-sea CO2 flux in the Southern Ocean[J]. Global Biogeochemical Cycles, 2012, 26(1): GB1008.
|
| [47] |
Nissen C, Vogt M, Münnich M, et al. Factors controlling coccolithophore biogeography in the Southern Ocean[J]. Biogeosciences, 2018, 15(22): 6997−7024. doi: 10.5194/bg-15-6997-2018
|
| [48] |
Worthen D L, Arrigo K R. A coupled ocean-ecosystem model of the Ross Sea. Part 1: interannual variability of primary production and phytoplankton community structure[M]//Ditullio G R, Dunbar R B. Biogeochemistry of the Ross Sea. Washington: American Geophysical Union, 2003: 93-105.
|
| [49] |
Arrigo K R, Worthen D L, Robinson D H. A coupled ocean-ecosystem model of the Ross Sea: 2. Iron regulation of phytoplankton taxonomic variability and primary production[J]. Journal of Geophysical Research: Oceans, 2003, 108(C7): 3231. doi: 10.1029/2001jc000856
|
| [50] |
Madec G, The NEMO Team. NEMO ocean engine[R]. The NEMO Team, 2008. (查阅网上资料, 未找到本条文献出版地信息, 不确定文献类型是否正确, 请确认)
|
| [51] |
Rousset C, Vancoppenolle M, Madec G, et al. The Louvain-La-Neuve sea ice model LIM3.6: global and regional capabilities[J]. Geoscientific Model Development, 2015, 8(10): 2991−3005. doi: 10.5194/gmd-8-2991-2015
|
| [52] |
Aumont O, Ethé C, Tagliabue A, et al. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies[J]. Geoscientific Model Development Discussions, 2015, 8(2): 1375−1509. doi: 10.5194/gmdd-8-1375-2015
|
| [53] |
Tagliabue A, Arrigo K R. Anomalously low zooplankton abundance in the Ross Sea: an alternative explanation[J]. Limnology and Oceanography, 2003, 48(2): 686−699. doi: 10.4319/lo.2003.48.2.0686
|
| [54] |
Le Quéré C, Rödenbeck C, Buitenhuis E T, et al. Saturation of the Southern Ocean CO2 sink due to recent climate change[J]. Science, 2007, 316(5832): 1735−1738. doi: 10.1126/science.1136188
|
| [55] |
Saenz B T, Arrigo K R. Annual primary production in Antarctic sea ice during 2005-2006 from a sea ice state estimate[J]. Journal of Geophysical Research: Oceans, 2014, 119(6): 3645−3678. doi: 10.1002/2013JC009677
|
| [56] |
Saenz B T, Arrigo K R. Simulation of a sea ice ecosystem using a hybrid model for slush layer desalination[J]. Journal of Geophysical Research: Oceans, 2012, 117(C5): C05007. doi: 10.1029/2011jc007544
|
| [57] |
Yool A, Popova E E, Anderson T R. Medusa-1.0: a new intermediate complexity plankton ecosystem model for the global domain[J]. Geoscientific Model Development, 2011, 4(2): 381−417. doi: 10.5194/gmd-4-381-2011
|
| [58] |
Yool A, Popova E E, Anderson T R. MEDUSA-2.0: an intermediate complexity biogeochemical model of the marine carbon cycle for climate change and ocean acidification studies[J]. Geoscientific Model Development, 2013, 6(5): 1767−1811. doi: 10.5194/gmd-6-1767-2013
|
| [59] |
Kvale K, Keller D P, Koeve W, et al. Explicit silicate cycling in the Kiel Marine Biogeochemistry Model version 3 (KMBM3) embedded in the UVic ESCM version 2.9[J]. Geoscientific Model Development Discussions, 2020, 2020: 1-46. (查阅网上资料, 未找到本条文献卷期页码信息, 请确认)
|
| [60] |
Saini H, Kvale K, Chase Z, et al. Southern Ocean ecosystem response to Last Glacial Maximum boundary conditions[J]. Paleoceanography and Paleoclimatology, 2021, 36(7): e2020PA004075. doi: 10.1029/2020PA004075
|
| [61] |
Zwally H J, Comiso J C, Gordon A L. Antarctic offshore leads and polynyas and oceanographic effects[M]//Jacobs S S. Oceanology of the Antarctic Continental Shelf. Washington: American Geophysical Union, 1985: 203-226.
|
| [62] |
Parish T R, Cassano J J, Seefeldt M W. Characteristics of the Ross Ice Shelf air stream as depicted in Antarctic Mesoscale Prediction System simulations[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D12): D12109. doi: 10.1029/2005jd006185
|
| [63] |
Docquier D, Massonnet F, Barthélemy A, et al. Relationships between Arctic sea ice drift and strength modelled by NEMO-LIM3.6[J]. The Cryosphere, 2017, 11(6): 2829−2846. doi: 10.5194/tc-11-2829-2017
|
| [64] |
Hibler III W D. A dynamic thermodynamic sea ice model[J]. Journal of Physical Oceanography, 1979, 9(4): 815−846. doi: 10.5194/tcd-3-1023-2009
|
| [65] |
Chikhar K, Lemieux J F, Dupont F, et al. Sensitivity of ice drift to form drag and ice strength parameterization in a coupled ice–ocean model[J]. Atmosphere-Ocean, 2019, 57(5): 329−349. doi: 10.1080/07055900.2019.1694859
|
| [66] |
Dong Chunming, Luo Xiaofan, Nie Hongtao, et al. Effect of compressive strength on the performance of the NEMO-LIM model in Arctic Sea ice simulation[J]. Journal of Oceanology and Limnology, 2023, 41(1): 1−16. doi: 10.1007/s00343-022-1241-z
|
| [67] |
Mazloff M R, Heimbach P, Wunsch C. An eddy-permitting Southern Ocean state estimate[J]. Journal of Physical Oceanography, 2010, 40(5): 880−899. doi: 10.1175/2009JPO4236.1
|
| [68] |
Donlon C J, Martin M, Stark J, et al. The operational sea surface temperature and sea ice analysis (OSTIA) system[J]. Remote Sensing of Environment, 2012, 116: 140−158. doi: 10.1016/j.rse.2010.10.017
|
| [69] |
Egbert G D, Erofeeva S Y. Efficient inverse modeling of barotropic ocean tides[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(2): 183−204. doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
|
| [70] |
Sathyendranath S, Brewin R J W, Brockmann C, et al. An ocean-colour time series for use in climate studies: the experience of the ocean-colour climate change initiative (OC-CCI)[J]. Sensors, 2019, 19(19): 4285. doi: 10.3390/s19194285
|
| [71] |
Belo Couto A, Brotas V, Mélin F, et al. Inter-comparison of OC-CCI chlorophyll-a estimates with precursor data sets[J]. International Journal of Remote Sensing, 2016, 37(18): 4337−4355. doi: 10.1080/01431161.2016.1209313
|
| [72] |
Zhai Dongran, Beaulieu C, Kudela R M. Long-term trends in the distribution of ocean chlorophyll[J]. Geophysical Research Letters, 2024, 51(7): e2023GL106577. doi: 10.1029/2023GL106577
|
| [73] |
Martinez E, Gorgues T, Lengaigne M, et al. Reconstructing global chlorophyll-a variations using a non-linear statistical approach[J]. Frontiers in Marine Science, 2020, 7: 464. doi: 10.3389/fmars.2020.00464
|
| [74] |
Taylor K E. Summarizing multiple aspects of model performance in a single diagram[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D7): 7183−7192. doi: 10.1029/2000JD900719
|
| [75] |
Radach G, Moll A. Review of three-dimensional ecological modeling related to the North Sea shelf system. Part II: model validation and data needs[J]. Oceanography and Marine Biology, 2006, 44: 1−60. doi: 10.1201/9781420006391-4
|
| [76] |
Dinniman M S, Klinck J M, Smith Jr W O. A model study of Circumpolar Deep Water on the West Antarctic Peninsula and Ross Sea continental shelves[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2011, 58(13/16): 1508−1523. doi: 10.1016/j.dsr2.2010.11.013
|
| [77] |
Dinniman M S, Klinck J M, Hofmann E E, et al. Effects of projected changes in wind, atmospheric temperature, and freshwater inflow on the Ross Sea[J]. Journal of Climate, 2018, 31(4): 1619−1635. doi: 10.1175/JCLI-D-17-0351.1
|
| [78] |
Wang Yufei, Zhou Meng, Zhang Zhaoru, et al. Seasonal variations in Circumpolar Deep Water intrusions into the Ross Sea continental shelf[J]. Frontiers in Marine Science, 2023, 10: 1020791. doi: 10.3389/fmars.2023.1020791
|
| [79] |
Orsi A H, Wiederwohl C L. A recount of Ross Sea waters[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2009, 56(13/14): 778−795. doi: 10.1016/j.dsr2.2008.10.033
|
| [80] |
Yan Liangjun, Wang Zhaomin, Liu Chengyan, et al. The salinity budget of the Ross Sea continental shelf, Antarctica[J]. Journal of Geophysical Research: Oceans, 2023, 128(3): e2022JC018979. doi: 10.1029/2022JC018979
|
| [81] |
Zhang Zhaoru, Xie Chuan, Wang Chuning, et al. The Ross Sea and Amundsen Sea Ice-Sea Model (RAISE v1.0): a high-resolution ocean-sea ice-ice shelf coupling model for simulating the Dense Shelf Water and Antarctic Bottom Water in the Ross Sea, Antarctica[J]. Geoscientific Model Development, 2024, 18(5): 1375−1393. doi: 10.5194/gmd-2024-128
|
| [82] |
Assmann K, Hellmer H H, Beckmann A. Seasonal variation in circulation and water mass distribution on the Ross Sea continental shelf[J]. Antarctic Science, 2003, 15(1): 3−11. doi: 10.1017/s0954102003001007
|
| [83] |
Chen Yuanjie, Zhang Zhaoru, Wang Xuezhu, et al. Interannual variations of heat budget over the eastern Ross Sea shelf and the forcing mechanisms[J]. 2022, 43(11): 5055-5076. (查阅网上资料, 未找到本条文献刊名和卷期页码信息, 请确认)
|
| [84] |
Xie Chuan, Zhang Zhaoru, Chen Yuanjie, et al. The response of Ross Sea shelf water properties to enhanced Amundsen Sea ice shelf melting[J]. Journal of Geophysical Research: Oceans, 2024, 129(7): e2024JC020919. doi: 10.1029/2024JC020919
|
| [85] |
Kohut J, Hunter E, Huber B. Small-scale variability of the cross-shelf flow over the outer shelf of the Ross Sea[J]. Journal of Geophysical Research: Oceans, 2013, 118(4): 1863−1876. doi: 10.1002/jgrc.20090
|
| [86] |
St-Laurent P, Klinck J M, Dinniman M S. On the role of coastal troughs in the circulation of warm Circumpolar Deep Water on Antarctic shelves[J]. Journal of Physical Oceanography, 2013, 43(1): 51−64. doi: 10.1175/JPO-D-11-0237.1
|
| [87] |
Wang Xiaoqiao, Zhang Zhaoru, Dinniman M S, et al. The response of sea ice and high-salinity shelf water in the Ross Ice Shelf Polynya to cyclonic atmosphere circulations[J]. The Cryosphere, 2023, 17(3): 1107−1126. doi: 10.5194/tc-17-1107-2023
|
| [88] |
Gordon A L, Zambianchi E, Orsi A, et al. Energetic plumes over the western Ross Sea continental slope[J]. Geophysical Research Letters, 2004, 31(21): L21302. doi: 10.1029/2004gl020785
|
| [89] |
Gordon A L, Orsi A H, Muench R, et al. Western Ross Sea continental slope gravity currents[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2009, 56(13/14): 796−817. doi: 10.1016/j.dsr2.2008.10.037
|
| [90] |
Lewis E L, Perkin R G. The winter oceanography of McMurdo Sound, Antarctica[M]//Jacobs S S. Oceanology of the Antarctic Continental Shelf. Washington: American Geophysical Union, 1985: 145-165.
|
| [91] |
Keys H, Jacobs S S, Barnett D. The calving and drift of iceberg B-9 in the Ross Sea, Antarctica[J]. Antarctic Science, 1990, 2(3): 243−257. doi: 10.1017/s0954102090000335
|
| [92] |
Picco P, Amici L, Meloni R, et al. Temporal variability of currents in the Ross Sea (Antarctica)[M]//Spezie G, Manzella G M R. Oceanography of the Ross Sea Antarctica. Milano: Springer, 1999: 103-117.
|
| [93] |
Picco P, Bergamasco A, Demicheli L, et al. Large-scale circulation features in the central and western Ross Sea (Antarctica)[M]//Faranda F M, Guglielmo L, Ianora A. Ross Sea Ecology: Italiantartide Expeditions (1987-1995). Berlin: Springer, 2000: 95-105.
|
| [94] |
Muench R D, Wåhlin A K, Özgökmen T M, et al. Impacts of bottom corrugations on a dense Antarctic outflow: NW Ross Sea[J]. Geophysical Research Letters, 2009, 36(23): L23607. doi: 10.1029/2009gl041347
|
| [95] |
Jendersie S, Williams M J M, Langhorne P J, et al. The density-driven winter intensification of the Ross Sea circulation[J]. Journal of Geophysical Research: Oceans, 2018, 123(11): 7702−7724. doi: 10.1029/2018JC013965
|
| [96] |
Sedwick P N, Marsay C M, Sohst B M, et al. Early season depletion of dissolved iron in the Ross Sea polynya: implications for iron dynamics on the Antarctic continental shelf[J]. Journal of Geophysical Research: Oceans, 2011, 116(C12): C12019. doi: 10.1029/2010JC006553
|
| [97] |
Marsay C M, Sedwick P N, Dinniman M S, et al. Estimating the benthic efflux of dissolved iron on the Ross Sea continental shelf[J]. Geophysical Research Letters, 2014, 41(21): 7576−7583. doi: 10.1002/2014GL061684
|
| [98] |
Gerringa L J A, Laan P, van Dijken G L, et al. Sources of iron in the Ross Sea Polynya in early summer[J]. Marine Chemistry, 2015, 177(Pt 3): 447-459.
|
| [99] |
Cao Ruobing, Smith Jr W O, Zhong Yisen, et al. The seasonal patterns of hydrographic and biogeochemical variables in the Ross Sea: a BGC-Argo analysis[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2025, 219: 105436. doi: 10.1016/j.dsr2.2024.105436
|
| [100] |
Gerringa L J A, Alderkamp A C, van Dijken G, et al. Dissolved trace metals in the Ross Sea[J]. Frontiers in Marine Science, 2020, 7: 577098. doi: 10.3389/fmars.2020.577098
|
| [101] |
Salmon E, Hofmann E E, Dinniman M S, et al. Evaluation of iron sources in the Ross Sea[J]. Journal of Marine Systems, 2020, 212: 103429. doi: 10.1016/j.jmarsys.2020.103429
|
| [102] |
Chen Shuangling, Smith Jr W O, Yu Xiaolei. Revisiting the ocean color algorithms for particulate organic carbon and chlorophyll‐a concentrations in the Ross Sea[J]. Journal of Geophysical Research: Oceans, 2021, 126(8): e2021JC017749. doi: 10.1029/2021JC017749
|
| [103] |
Park J, Kim J H, Kim H C, et al. Environmental forcings on the remotely sensed phytoplankton bloom phenology in the central Ross Sea Polynya[J]. Journal of Geophysical Research: Oceans, 2019, 124(8): 5400−5417. doi: 10.1029/2019JC015222
|