Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Turn off MathJax
Article Contents
Longxing Zhu,Xiaofan Luo,Wei Zhao, et al. Development and evaluation of a regional high-resolution coupled ocean-sea ice-ecosystem model for the Ross Sea, Antarctica[J]. Haiyang Xuebao,2026, 48(x):1–18 doi: 10.12284/hyxb20260000
Citation: Longxing Zhu,Xiaofan Luo,Wei Zhao, et al. Development and evaluation of a regional high-resolution coupled ocean-sea ice-ecosystem model for the Ross Sea, Antarctica[J]. Haiyang Xuebao,2026, 48(x):1–18 doi: 10.12284/hyxb20260000

Development and evaluation of a regional high-resolution coupled ocean-sea ice-ecosystem model for the Ross Sea, Antarctica

doi: 10.12284/hyxb20260000
  • Received Date: 2025-10-27
  • Rev Recd Date: 2025-12-29
  • Available Online: 2026-01-21
  • Developing plans for marine protected areas and predicting future changes in marine ecosystems require improved understanding of the response of marine lower trophic levels to environmental changes. For this purpose, numerical models are useful tools while they require continual improvement because of the inclusion of multiple parameters. This study focuses on development and evaluation of a high-resolution three-dimensional coupled ocean, sea-ice and ecosystem model for the Ross Sea (abbr. ROSE). Based on learnings from reviewing the previously developed marine ecosystem models covering the Ross Sea, ROSE is developed using version 3.6 of the Nucleus for European Modeling of the Ocean, version 3 of the Louvain-la-Neuve Sea Ice Model, and the Pelagic Interactions Scheme for Carbon and Ecosystem Study (volume 2). A series tuning of the parameters related to ice dynamics has been carried out. The results suggest that tuning the ice-ocean drag coefficient leads to improved simulation of the coastal polynya, which is a distinct feature in the Ross Sea. A decade-long hindcast simulation, covering 2010–2020, is achieved. The simulated space-time variations of sea ice, ocean hydrography, dissolved iron and Chl-a concentrations are evaluated against available observations and previously published results. The evaluation results suggest that ROSE possesses reasonable skills in reproducing the known features of the above state variables and thus can be further applied to study the mechanism driving recent environmental changes and the response of lower trophic levels in the Ross Sea ecosystem.
  • loading
  • [1]
    Arrigo K R, van Dijken G L, Bushinsky S. Primary production in the Southern Ocean, 1997-2006[J]. Journal of Geophysical Research: Oceans, 2008, 113(C8): C08004.
    [2]
    Goffart A, Catalano G, Hecq J H. Factors controlling the distribution of diatoms and Phaeocystis in the Ross Sea[J]. Journal of Marine Systems, 2000, 27(1/3): 161−175.
    [3]
    Smith Jr W O, Ainley D G, Arrigo K R, et al. The oceanography and ecology of the Ross Sea[J]. Annual Review of Marine Science, 2014, 6(1): 469−487. doi: 10.1146/annurev-marine-010213-135114
    [4]
    Arrigo K R, van Dijken G, Long M. Coastal Southern Ocean: a strong anthropogenic CO2 sink[J]. Geophysical Research Letters, 2008, 35(21): L21602. doi: 10.1029/2008gl035624
    [5]
    Arrigo K R, Weiss A M, Smith Jr W O. Physical forcing of phytoplankton dynamics in the southwestern Ross Sea[J]. Journal of Geophysical Research: Oceans, 1998, 103(C1): 1007−1021. doi: 10.1029/97JC02326
    [6]
    Smith Jr W O. Primary productivity measurements in the Ross Sea, Antarctica: a regional synthesis[J]. Earth System Science Data, 2022, 14(6): 2737−2747. doi: 10.5194/essd-14-2737-2022
    [7]
    Schoemann V, Becquevort S, Stefels J, et al. Phaeocystis blooms in the global ocean and their controlling mechanisms: a review[J]. Journal of Sea Research, 2005, 53(1/2): 43−66. doi: 10.1016/j.seares.2004.01.008
    [8]
    Sweeney C, Hansell D A, Carlson C A, et al. Biogeochemical regimes, net community production and carbon export in the Ross Sea, Antarctica[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2000, 47(15/16): 3369−3394. doi: 10.1016/s0967-0645(00)00072-2
    [9]
    Richardson K, Beardall J, Raven J A. Adaptation of unicellular algae to irradiance: an analysis of strategies[J]. New Phytologist, 1983, 93(2): 157−191. doi: 10.1111/j.1469-8137.1983.tb03422.x
    [10]
    van Hilst C M, Smith Jr W O. Photosynthesis/irradiance relationships in the Ross Sea, Antarctica, and their control by phytoplankton assemblage composition and environmental factors[J]. Marine Ecology Progress Series, 2002, 226: 1−12. doi: 10.3354/meps226001
    [11]
    Alderkamp A C, van Dijken G L, Lowry K E, et al. Effects of iron and light availability on phytoplankton photosynthetic properties in the Ross Sea[J]. Marine Ecology Progress Series, 2019, 621: 33−50. doi: 10.3354/meps13000
    [12]
    Smith W O, Nelson D M. Phytoplankton bloom produced by a receding ice edge in the Ross Sea: spatial coherence with the density field[J]. Science, 1985, 227(4683): 163−166. doi: 10.1126/science.227.4683.163
    [13]
    McGillicuddy Jr D J, Sedwick P N, Dinniman M S, et al. Iron supply and demand in an Antarctic shelf ecosystem[J]. Geophysical Research Letters, 2015, 42(19): 8088−8097. doi: 10.1002/2015GL065727
    [14]
    Kustka A B, Kohut J T, White A E, et al. The roles of MCDW and deep water iron supply in sustaining a recurrent phytoplankton bloom on central Pennell Bank (Ross Sea)[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2015, 105: 171−185. doi: 10.1016/j.dsr.2015.08.012
    [15]
    Marsay C M, Barrett P M, McGillicuddy Jr D J, et al. Distributions, sources, and transformations of dissolved and particulate iron on the Ross Sea continental shelf during summer[J]. Journal of Geophysical Research: Oceans, 2017, 122(8): 6371−6393. doi: 10.1002/2017JC013068
    [16]
    Nissen C, Vogt M. Factors controlling the competition between Phaeocystis and diatoms in the Southern Ocean and implications for carbon export fluxes[J]. Biogeosciences, 2021, 18(1): 251−283. doi: 10.5194/bg-18-251-2021
    [17]
    Zhang Yongli, Zhao Wei, Wei Hao, et al. Iron limitation and uneven grazing pressure on phytoplankton co-lead the seasonal species succession in the Ross Ice Shelf Polynya[J]. Journal of Geophysical Research: Oceans, 2023, 128(3): e2022JC019026. doi: 10.1029/2022JC019026
    [18]
    Arteaga L A, Boss E, Behrenfeld M J, et al. Seasonal modulation of phytoplankton biomass in the Southern Ocean[J]. Nature Communications, 2020, 11(1): 5364. doi: 10.1038/s41467-020-19157-2
    [19]
    Parkinson C L. A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(29): 14414−14423. doi: 10.3410/f.736084233.793562060
    [20]
    DuVivier A K, Molina M J, Deppenmeier A L, et al. Projections of winter polynyas and their biophysical impacts in the Ross Sea Antarctica[J]. Climate Dynamics, 2024, 62(2): 989−1012. doi: 10.1007/s00382-023-06951-z
    [21]
    Castagno P, Falco P, Dinniman M S, et al. Temporal variability of the Circumpolar Deep Water inflow onto the Ross Sea continental shelf[J]. Journal of Marine Systems, 2017, 166: 37−49. doi: 10.1016/j.jmarsys.2016.05.006
    [22]
    Montes-Hugo M, Doney S C, Ducklow H W, et al. Recent changes in phytoplankton communities associated with rapid regional climate change along the western Antarctic Peninsula[J]. Science, 2009, 323(5920): 1470−1473. doi: 10.1126/science.1164533
    [23]
    Smith Jr W O, Sedwick P N, Arrigo K R, et al. The Ross Sea in a sea of change[J]. Oceanography, 2012, 25(3): 90−103. doi: 10.5670/oceanog.2012.80
    [24]
    Porter D F, Springer S R, Padman L, et al. Evolution of the seasonal surface mixed layer of the Ross Sea, Antarctica, observed with autonomous profiling floats[J]. Journal of Geophysical Research: Oceans, 2019, 124(7): 4934−4953. doi: 10.1029/2018JC014683
    [25]
    Jacobs S S, Giulivi C F, Dutrieux P. Persistent Ross Sea freshening from imbalance West Antarctic ice shelf melting[J]. Journal of Geophysical Research: Oceans, 2022, 127(3): e2021JC017808. doi: 10.1029/2021JC017808
    [26]
    Smith Jr W O, Dinniman M S, Hofmann E E, et al. The effects of changing winds and temperatures on the oceanography of the Ross Sea in the 21st century[J]. Geophysical Research Letters, 2014, 41(5): 1624−1631. doi: 10.1002/2014GL059311
    [27]
    Wang Zhaomin. On the response of Southern Hemisphere subpolar gyres to climate change in coupled climate models[J]. Journal of Geophysical Research: Oceans, 2013, 118(3): 1070−1086. doi: 10.1002/jgrc.20111
    [28]
    Sullivan C W, Arrigo K R, McClain C R, et al. Distributions of phytoplankton blooms in the Southern Ocean[J]. Science, 1993, 262(5141): 1832−1837. doi: 10.1126/science.262.5141.1832
    [29]
    Peloquin J A, Smith Jr W O. Phytoplankton blooms in the Ross Sea, Antarctica: interannual variability in magnitude, temporal patterns, and composition[J]. Journal of Geophysical Research: Oceans, 2007, 112(C8): C08013. doi: 10.1029/2006jc003816
    [30]
    Smith Jr W O, Asper V, Tozzi S, et al. Surface layer variability in the Ross Sea, Antarctica as assessed by in situ fluorescence measurements[J]. Progress in Oceanography, 2011, 88(1/4): 28−45. doi: 10.1016/j.pocean.2010.08.002
    [31]
    Arrigo K R, Robinson D H, Worthen D L, et al. Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean[J]. Science, 1999, 283(5400): 365−367. doi: 10.1126/science.283.5400.365
    [32]
    Liu Xiao, Smith Jr W O. Physiochemical controls on phytoplankton distributions in the Ross Sea, Antarctica[J]. Journal of Marine Systems, 2012, 94: 135−144. doi: 10.1016/j.jmarsys.2011.11.013
    [33]
    Bolinesi F, Saggiomo M, Ardini F, et al. Spatial-related community structure and dynamics in phytoplankton of the Ross Sea, Antarctica[J]. Frontiers in Marine Science, 2020, 7: 574963. doi: 10.3389/fmars.2020.574963
    [34]
    Maier-Reimer E. Geochemical cycles in an ocean general circulation model. Preindustrial tracer distributions[J]. Global Biogeochemical Cycles, 1993, 7(3): 645−677. doi: 10.1029/93GB01355
    [35]
    Six K D, Maier-Reimer E. Effects of plankton dynamics on seasonal carbon fluxes in an ocean general circulation model[J]. Global Biogeochemical Cycles, 1996, 10(4): 559−583. doi: 10.1029/96GB02561
    [36]
    Friedlingstein P, Dufresne J L, Cox P M, et al. How positive is the feedback between climate change and the carbon cycle?[J]. Tellus B, 2003, 55(2): 692−700. doi: 10.3402/tellusb.v55i2.16765
    [37]
    Pasquer B, Metzl N, Goosse H, et al. What drives the seasonality of air-sea CO2 fluxes in the ice-free zone of the Southern Ocean: a 1D coupled physical-biogeochemical model approach[J]. Marine Chemistry, 2015, 177(Pt 3): 554-565.
    [38]
    Pondaven P, Fravalo C, Ruiz-Pino D, et al. Modelling the silica pump in the Permanently Open Ocean Zone of the Southern Ocean[J]. Journal of Marine Systems, 1998, 17(1/4): 587−619. doi: 10.1016/s0924-7963(98)00066-9
    [39]
    Martin J H, Gordon R M, Fitzwater S E. Iron in Antarctic waters[J]. Nature, 1990, 345(6271): 156−158. doi: 10.1038/345156a0
    [40]
    Lancelot C, Hannon E, Becquevort S, et al. Modeling phytoplankton blooms and carbon export production in the Southern Ocean: dominant controls by light and iron in the Atlantic sector in Austral spring 1992[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2000, 47(9): 1621−1662. doi: 10.1016/S0967-0637(00)00005-4
    [41]
    Pasquer B, Laruelle G, Becquevort S, et al. Linking ocean biogeochemical cycles and ecosystem structure and function: results of the complex SWAMCO-4 model[J]. Journal of Sea Research, 2005, 53(1/2): 93−108. doi: 10.1016/j.seares.2004.07.001
    [42]
    Kaufman D E, Friedrichs M A M, Smith Jr W O, et al. Climate change impacts on southern Ross Sea phytoplankton composition, productivity, and export[J]. Journal of Geophysical Research: Oceans, 2017, 122(3): 2339−2359. doi: 10.1002/2016JC012514
    [43]
    Kwon Y S, La H S, Jung J, et al. Exploring the roles of iron and irradiance in dynamics of diatoms and Phaeocystis in the Amundsen Sea continental shelf water[J]. Journal of Geophysical Research: Oceans, 2021, 126(3): e2020JC016673. doi: 10.1029/2020JC016673
    [44]
    Kwon Y S, La H S, Kang H W, et al. A regional-scale approach for modeling primary production and biogenic silica export in the Southern Ocean[J]. Environmental Research, 2023, 217: 114811. doi: 10.1016/j.envres.2022.114811
    [45]
    Wang Shanlin, Moore J K. Incorporating Phaeocystis into a Southern Ocean ecosystem model[J]. Journal of Geophysical Research: Oceans, 2011, 116(C1): C01019.
    [46]
    Wang Shanlin, Moore J K. Variability of primary production and air-sea CO2 flux in the Southern Ocean[J]. Global Biogeochemical Cycles, 2012, 26(1): GB1008.
    [47]
    Nissen C, Vogt M, Münnich M, et al. Factors controlling coccolithophore biogeography in the Southern Ocean[J]. Biogeosciences, 2018, 15(22): 6997−7024. doi: 10.5194/bg-15-6997-2018
    [48]
    Worthen D L, Arrigo K R. A coupled ocean-ecosystem model of the Ross Sea. Part 1: interannual variability of primary production and phytoplankton community structure[M]//Ditullio G R, Dunbar R B. Biogeochemistry of the Ross Sea. Washington: American Geophysical Union, 2003: 93-105.
    [49]
    Arrigo K R, Worthen D L, Robinson D H. A coupled ocean-ecosystem model of the Ross Sea: 2. Iron regulation of phytoplankton taxonomic variability and primary production[J]. Journal of Geophysical Research: Oceans, 2003, 108(C7): 3231. doi: 10.1029/2001jc000856
    [50]
    Madec G, The NEMO Team. NEMO ocean engine[R]. The NEMO Team, 2008. (查阅网上资料, 未找到本条文献出版地信息, 不确定文献类型是否正确, 请确认)
    [51]
    Rousset C, Vancoppenolle M, Madec G, et al. The Louvain-La-Neuve sea ice model LIM3.6: global and regional capabilities[J]. Geoscientific Model Development, 2015, 8(10): 2991−3005. doi: 10.5194/gmd-8-2991-2015
    [52]
    Aumont O, Ethé C, Tagliabue A, et al. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies[J]. Geoscientific Model Development Discussions, 2015, 8(2): 1375−1509. doi: 10.5194/gmdd-8-1375-2015
    [53]
    Tagliabue A, Arrigo K R. Anomalously low zooplankton abundance in the Ross Sea: an alternative explanation[J]. Limnology and Oceanography, 2003, 48(2): 686−699. doi: 10.4319/lo.2003.48.2.0686
    [54]
    Le Quéré C, Rödenbeck C, Buitenhuis E T, et al. Saturation of the Southern Ocean CO2 sink due to recent climate change[J]. Science, 2007, 316(5832): 1735−1738. doi: 10.1126/science.1136188
    [55]
    Saenz B T, Arrigo K R. Annual primary production in Antarctic sea ice during 2005-2006 from a sea ice state estimate[J]. Journal of Geophysical Research: Oceans, 2014, 119(6): 3645−3678. doi: 10.1002/2013JC009677
    [56]
    Saenz B T, Arrigo K R. Simulation of a sea ice ecosystem using a hybrid model for slush layer desalination[J]. Journal of Geophysical Research: Oceans, 2012, 117(C5): C05007. doi: 10.1029/2011jc007544
    [57]
    Yool A, Popova E E, Anderson T R. Medusa-1.0: a new intermediate complexity plankton ecosystem model for the global domain[J]. Geoscientific Model Development, 2011, 4(2): 381−417. doi: 10.5194/gmd-4-381-2011
    [58]
    Yool A, Popova E E, Anderson T R. MEDUSA-2.0: an intermediate complexity biogeochemical model of the marine carbon cycle for climate change and ocean acidification studies[J]. Geoscientific Model Development, 2013, 6(5): 1767−1811. doi: 10.5194/gmd-6-1767-2013
    [59]
    Kvale K, Keller D P, Koeve W, et al. Explicit silicate cycling in the Kiel Marine Biogeochemistry Model version 3 (KMBM3) embedded in the UVic ESCM version 2.9[J]. Geoscientific Model Development Discussions, 2020, 2020: 1-46. (查阅网上资料, 未找到本条文献卷期页码信息, 请确认)
    [60]
    Saini H, Kvale K, Chase Z, et al. Southern Ocean ecosystem response to Last Glacial Maximum boundary conditions[J]. Paleoceanography and Paleoclimatology, 2021, 36(7): e2020PA004075. doi: 10.1029/2020PA004075
    [61]
    Zwally H J, Comiso J C, Gordon A L. Antarctic offshore leads and polynyas and oceanographic effects[M]//Jacobs S S. Oceanology of the Antarctic Continental Shelf. Washington: American Geophysical Union, 1985: 203-226.
    [62]
    Parish T R, Cassano J J, Seefeldt M W. Characteristics of the Ross Ice Shelf air stream as depicted in Antarctic Mesoscale Prediction System simulations[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D12): D12109. doi: 10.1029/2005jd006185
    [63]
    Docquier D, Massonnet F, Barthélemy A, et al. Relationships between Arctic sea ice drift and strength modelled by NEMO-LIM3.6[J]. The Cryosphere, 2017, 11(6): 2829−2846. doi: 10.5194/tc-11-2829-2017
    [64]
    Hibler III W D. A dynamic thermodynamic sea ice model[J]. Journal of Physical Oceanography, 1979, 9(4): 815−846. doi: 10.5194/tcd-3-1023-2009
    [65]
    Chikhar K, Lemieux J F, Dupont F, et al. Sensitivity of ice drift to form drag and ice strength parameterization in a coupled ice–ocean model[J]. Atmosphere-Ocean, 2019, 57(5): 329−349. doi: 10.1080/07055900.2019.1694859
    [66]
    Dong Chunming, Luo Xiaofan, Nie Hongtao, et al. Effect of compressive strength on the performance of the NEMO-LIM model in Arctic Sea ice simulation[J]. Journal of Oceanology and Limnology, 2023, 41(1): 1−16. doi: 10.1007/s00343-022-1241-z
    [67]
    Mazloff M R, Heimbach P, Wunsch C. An eddy-permitting Southern Ocean state estimate[J]. Journal of Physical Oceanography, 2010, 40(5): 880−899. doi: 10.1175/2009JPO4236.1
    [68]
    Donlon C J, Martin M, Stark J, et al. The operational sea surface temperature and sea ice analysis (OSTIA) system[J]. Remote Sensing of Environment, 2012, 116: 140−158. doi: 10.1016/j.rse.2010.10.017
    [69]
    Egbert G D, Erofeeva S Y. Efficient inverse modeling of barotropic ocean tides[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(2): 183−204. doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
    [70]
    Sathyendranath S, Brewin R J W, Brockmann C, et al. An ocean-colour time series for use in climate studies: the experience of the ocean-colour climate change initiative (OC-CCI)[J]. Sensors, 2019, 19(19): 4285. doi: 10.3390/s19194285
    [71]
    Belo Couto A, Brotas V, Mélin F, et al. Inter-comparison of OC-CCI chlorophyll-a estimates with precursor data sets[J]. International Journal of Remote Sensing, 2016, 37(18): 4337−4355. doi: 10.1080/01431161.2016.1209313
    [72]
    Zhai Dongran, Beaulieu C, Kudela R M. Long-term trends in the distribution of ocean chlorophyll[J]. Geophysical Research Letters, 2024, 51(7): e2023GL106577. doi: 10.1029/2023GL106577
    [73]
    Martinez E, Gorgues T, Lengaigne M, et al. Reconstructing global chlorophyll-a variations using a non-linear statistical approach[J]. Frontiers in Marine Science, 2020, 7: 464. doi: 10.3389/fmars.2020.00464
    [74]
    Taylor K E. Summarizing multiple aspects of model performance in a single diagram[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D7): 7183−7192. doi: 10.1029/2000JD900719
    [75]
    Radach G, Moll A. Review of three-dimensional ecological modeling related to the North Sea shelf system. Part II: model validation and data needs[J]. Oceanography and Marine Biology, 2006, 44: 1−60. doi: 10.1201/9781420006391-4
    [76]
    Dinniman M S, Klinck J M, Smith Jr W O. A model study of Circumpolar Deep Water on the West Antarctic Peninsula and Ross Sea continental shelves[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2011, 58(13/16): 1508−1523. doi: 10.1016/j.dsr2.2010.11.013
    [77]
    Dinniman M S, Klinck J M, Hofmann E E, et al. Effects of projected changes in wind, atmospheric temperature, and freshwater inflow on the Ross Sea[J]. Journal of Climate, 2018, 31(4): 1619−1635. doi: 10.1175/JCLI-D-17-0351.1
    [78]
    Wang Yufei, Zhou Meng, Zhang Zhaoru, et al. Seasonal variations in Circumpolar Deep Water intrusions into the Ross Sea continental shelf[J]. Frontiers in Marine Science, 2023, 10: 1020791. doi: 10.3389/fmars.2023.1020791
    [79]
    Orsi A H, Wiederwohl C L. A recount of Ross Sea waters[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2009, 56(13/14): 778−795. doi: 10.1016/j.dsr2.2008.10.033
    [80]
    Yan Liangjun, Wang Zhaomin, Liu Chengyan, et al. The salinity budget of the Ross Sea continental shelf, Antarctica[J]. Journal of Geophysical Research: Oceans, 2023, 128(3): e2022JC018979. doi: 10.1029/2022JC018979
    [81]
    Zhang Zhaoru, Xie Chuan, Wang Chuning, et al. The Ross Sea and Amundsen Sea Ice-Sea Model (RAISE v1.0): a high-resolution ocean-sea ice-ice shelf coupling model for simulating the Dense Shelf Water and Antarctic Bottom Water in the Ross Sea, Antarctica[J]. Geoscientific Model Development, 2024, 18(5): 1375−1393. doi: 10.5194/gmd-2024-128
    [82]
    Assmann K, Hellmer H H, Beckmann A. Seasonal variation in circulation and water mass distribution on the Ross Sea continental shelf[J]. Antarctic Science, 2003, 15(1): 3−11. doi: 10.1017/s0954102003001007
    [83]
    Chen Yuanjie, Zhang Zhaoru, Wang Xuezhu, et al. Interannual variations of heat budget over the eastern Ross Sea shelf and the forcing mechanisms[J]. 2022, 43(11): 5055-5076. (查阅网上资料, 未找到本条文献刊名和卷期页码信息, 请确认)
    [84]
    Xie Chuan, Zhang Zhaoru, Chen Yuanjie, et al. The response of Ross Sea shelf water properties to enhanced Amundsen Sea ice shelf melting[J]. Journal of Geophysical Research: Oceans, 2024, 129(7): e2024JC020919. doi: 10.1029/2024JC020919
    [85]
    Kohut J, Hunter E, Huber B. Small-scale variability of the cross-shelf flow over the outer shelf of the Ross Sea[J]. Journal of Geophysical Research: Oceans, 2013, 118(4): 1863−1876. doi: 10.1002/jgrc.20090
    [86]
    St-Laurent P, Klinck J M, Dinniman M S. On the role of coastal troughs in the circulation of warm Circumpolar Deep Water on Antarctic shelves[J]. Journal of Physical Oceanography, 2013, 43(1): 51−64. doi: 10.1175/JPO-D-11-0237.1
    [87]
    Wang Xiaoqiao, Zhang Zhaoru, Dinniman M S, et al. The response of sea ice and high-salinity shelf water in the Ross Ice Shelf Polynya to cyclonic atmosphere circulations[J]. The Cryosphere, 2023, 17(3): 1107−1126. doi: 10.5194/tc-17-1107-2023
    [88]
    Gordon A L, Zambianchi E, Orsi A, et al. Energetic plumes over the western Ross Sea continental slope[J]. Geophysical Research Letters, 2004, 31(21): L21302. doi: 10.1029/2004gl020785
    [89]
    Gordon A L, Orsi A H, Muench R, et al. Western Ross Sea continental slope gravity currents[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2009, 56(13/14): 796−817. doi: 10.1016/j.dsr2.2008.10.037
    [90]
    Lewis E L, Perkin R G. The winter oceanography of McMurdo Sound, Antarctica[M]//Jacobs S S. Oceanology of the Antarctic Continental Shelf. Washington: American Geophysical Union, 1985: 145-165.
    [91]
    Keys H, Jacobs S S, Barnett D. The calving and drift of iceberg B-9 in the Ross Sea, Antarctica[J]. Antarctic Science, 1990, 2(3): 243−257. doi: 10.1017/s0954102090000335
    [92]
    Picco P, Amici L, Meloni R, et al. Temporal variability of currents in the Ross Sea (Antarctica)[M]//Spezie G, Manzella G M R. Oceanography of the Ross Sea Antarctica. Milano: Springer, 1999: 103-117.
    [93]
    Picco P, Bergamasco A, Demicheli L, et al. Large-scale circulation features in the central and western Ross Sea (Antarctica)[M]//Faranda F M, Guglielmo L, Ianora A. Ross Sea Ecology: Italiantartide Expeditions (1987-1995). Berlin: Springer, 2000: 95-105.
    [94]
    Muench R D, Wåhlin A K, Özgökmen T M, et al. Impacts of bottom corrugations on a dense Antarctic outflow: NW Ross Sea[J]. Geophysical Research Letters, 2009, 36(23): L23607. doi: 10.1029/2009gl041347
    [95]
    Jendersie S, Williams M J M, Langhorne P J, et al. The density-driven winter intensification of the Ross Sea circulation[J]. Journal of Geophysical Research: Oceans, 2018, 123(11): 7702−7724. doi: 10.1029/2018JC013965
    [96]
    Sedwick P N, Marsay C M, Sohst B M, et al. Early season depletion of dissolved iron in the Ross Sea polynya: implications for iron dynamics on the Antarctic continental shelf[J]. Journal of Geophysical Research: Oceans, 2011, 116(C12): C12019. doi: 10.1029/2010JC006553
    [97]
    Marsay C M, Sedwick P N, Dinniman M S, et al. Estimating the benthic efflux of dissolved iron on the Ross Sea continental shelf[J]. Geophysical Research Letters, 2014, 41(21): 7576−7583. doi: 10.1002/2014GL061684
    [98]
    Gerringa L J A, Laan P, van Dijken G L, et al. Sources of iron in the Ross Sea Polynya in early summer[J]. Marine Chemistry, 2015, 177(Pt 3): 447-459.
    [99]
    Cao Ruobing, Smith Jr W O, Zhong Yisen, et al. The seasonal patterns of hydrographic and biogeochemical variables in the Ross Sea: a BGC-Argo analysis[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2025, 219: 105436. doi: 10.1016/j.dsr2.2024.105436
    [100]
    Gerringa L J A, Alderkamp A C, van Dijken G, et al. Dissolved trace metals in the Ross Sea[J]. Frontiers in Marine Science, 2020, 7: 577098. doi: 10.3389/fmars.2020.577098
    [101]
    Salmon E, Hofmann E E, Dinniman M S, et al. Evaluation of iron sources in the Ross Sea[J]. Journal of Marine Systems, 2020, 212: 103429. doi: 10.1016/j.jmarsys.2020.103429
    [102]
    Chen Shuangling, Smith Jr W O, Yu Xiaolei. Revisiting the ocean color algorithms for particulate organic carbon and chlorophyll‐a concentrations in the Ross Sea[J]. Journal of Geophysical Research: Oceans, 2021, 126(8): e2021JC017749. doi: 10.1029/2021JC017749
    [103]
    Park J, Kim J H, Kim H C, et al. Environmental forcings on the remotely sensed phytoplankton bloom phenology in the central Ross Sea Polynya[J]. Journal of Geophysical Research: Oceans, 2019, 124(8): 5400−5417. doi: 10.1029/2019JC015222
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article views (43) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return