Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 47 Issue 11
Nov.  2025
Turn off MathJax
Article Contents
Zheng Yang,Wei Qinsheng,Wu Linni, et al. Distribution characteristics of hypoxia and controlling factors on the East China Sea shelf in autumn[J]. Haiyang Xuebao,2025, 47(11):42–56 doi: 10.12284/hyxb2025146
Citation: Zheng Yang,Wei Qinsheng,Wu Linni, et al. Distribution characteristics of hypoxia and controlling factors on the East China Sea shelf in autumn[J]. Haiyang Xuebao,2025, 47(11):42–56 doi: 10.12284/hyxb2025146

Distribution characteristics of hypoxia and controlling factors on the East China Sea shelf in autumn

doi: 10.12284/hyxb2025146
  • Received Date: 2025-09-01
  • Rev Recd Date: 2025-10-14
  • Available Online: 2025-10-25
  • Publish Date: 2025-11-30
  • The Changjiang Estuary-East China Sea (ECS) shelf system is one of the world's largest seasonal hypoxic zones, significantly influencing regional biogeochemical and ecological processes. However, the variation processes and controlling mechanisms during its autumn decay phase remain a limited understanding. Using multidisciplinary survey data collected from the ECS shelf in September 2017, this study documents the spatial distribution of the hypoxic zone and the characteristics of physical and chemical environment in autumn. And through analysis of hydrodynamic and biogeochemical processes, the controlling factors of hypoxia are further investigated. Results reveal a northeast-southwest oriented bottom dissolved oxygen (DO) minimum zone (DO mass concentration < 4 mg/L, minimum of 2.52 mg/L) over the mid-shelf off Zhejiang within the 40−60 m isobath, showing a certain uplift tendency on its nearshore side. This hypoxic zone is basically within the influence area of the Kuroshio subsurface water (KSSW) nearshore branch (also known as the bottom water of the Taiwan Warm Current). The pycnocline and front structures near the outer edge of this branch restrict oxygen exchange between the hypoxic water and the overlying and surrounding water, providing hydrodynamic conditions that sustain the hypoxia into the autumn. The upwelling of the KSSW nearshore branch is identified as a major cause of the mid-water hypoxia over the inner shelf. Furthermore, the nutrients transported by southeastward offshore expansion of low-salinity water and upwelling at Zhejiang coast serve as a critical material foundation for in situ primary production, which partly modulates the intensity of the hypoxic zone. It is also shown that as the KSSW nearshore branch retreats southward and seaward in autumn, the core of the hypoxic zone moves correspondingly southward and offshore, eventually dissipating. This study provides an important insight into the decay processes and controlling mechanisms of the hypoxic zone in the Changjiang Estuary-ECS shelf system during autumn.
  • loading
  • [1]
    Diaz R J, Rosenberg R. Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna[J]. Oceanography and Marine Biology: An Annual Review, 1995, 33: 245−303.
    [2]
    Levin L A, Ekau W, Gooday A J, et al. Effects of natural and human-induced hypoxia on coastal benthos[J]. Biogeosciences, 2009, 6(10): 2063−2098. doi: 10.5194/bg-6-2063-2009
    [3]
    Naqvi S W A, Bange H W, Farías L, et al. Marine hypoxia/anoxia as a source of CH4 and N2O[J]. Biogeosciences, 2010, 7(7): 2159−2190. doi: 10.5194/bg-7-2159-2010
    [4]
    Liu Shuangyuan, Gao Quanzhou, Wu Jiaxue, et al. The concentration of CH4, N2O and CO2 in the Pearl River estuary increased significantly due to the sediment particle resuspension and the interaction of hypoxia[J]. Science of the Total Environment, 2024, 911: 168795. doi: 10.1016/j.scitotenv.2023.168795
    [5]
    Diaz R J, Rosenberg R. Spreading dead zones and consequences for marine ecosystems[J]. Science, 2008, 321(5891): 926−929. doi: 10.1126/science.1156401
    [6]
    Breitburg D, Levin L A, Oschlies A, et al. Declining oxygen in the global ocean and coastal waters[J]. Science, 2018, 359(6371): eaam7240. doi: 10.1126/science.aam7240
    [7]
    Rabouille C, Conley D J, Dai Minhan, et al. Comparison of hypoxia among four river-dominated ocean margins: the Changjiang (Yangtze), Mississippi, Pearl, and Rhône rivers[J]. Continental Shelf Research, 2008, 28(12): 1527−1537. doi: 10.1016/j.csr.2008.01.020
    [8]
    Chen Xiaofeng, Shen Zhenyao, Li Yangyang, et al. Physical controls of hypoxia in waters adjacent to the Yangtze Estuary: a numerical modeling study[J]. Marine Pollution Bulletin, 2015, 97(1/2): 349−364.
    [9]
    Zhang Wenxia, Hetland R D, Ruiz V, et al. Stratification duration and the formation of bottom hypoxia over the Texas-Louisiana shelf[J]. Estuarine, Coastal and Shelf Science, 2020, 238: 106711. doi: 10.1016/j.ecss.2020.106711
    [10]
    Obenour D R, Michalak A M, Zhou Yuntao, et al. Quantifying the impacts of stratification and nutrient loading on hypoxia in the northern Gulf of Mexico[J]. Environmental Science & Technology, 2012, 46(10): 5489−5496.
    [11]
    Rabalais N N, Cai Weijun, Carstensen J, et al. Eutrophication-driven deoxygenation in the coastal ocean[J]. Oceanography, 2014, 27(1): 172−183. doi: 10.5670/oceanog.2014.21
    [12]
    Fennel K, Testa J M. Biogeochemical controls on coastal hypoxia[J]. Annual Review of Marine Science, 2019, 11: 105−130. doi: 10.1146/annurev-marine-010318-095138
    [13]
    Cheresh J, Fiechter J. Physical and biogeochemical drivers of alongshore pH and oxygen variability in the California Current System[J]. Geophysical Research Letters, 2020, 47(19): e2020GL089553. doi: 10.1029/2020GL089553
    [14]
    Farías L, Cornejo M. Effect of seasonal changes in bottom water oxygenation on sediment N oxides and N2O cycling in the coastal upwelling regime off central Chile (36.5°S)[J]. Progress in Oceanography, 2007, 75(3): 561−575. doi: 10.1016/j.pocean.2007.08.019
    [15]
    Chan F, Barth J A, Lubchenco J, et al. Emergence of anoxia in the California Current large marine ecosystem[J]. Science, 2008, 319(5865): 920. doi: 10.1126/science.1149016
    [16]
    韦钦胜, 臧家业, 战闰, 等. 夏季长江口东北部上升流海域的生态环境特征[J]. 海洋与湖沼, 2011, 42(6): 899−905.

    Wei Qinsheng, Zang Jiaye, Zhan Run, et al. Characteristics of the ecological environment in the upwelling area northeast of the Changjiang River Estuary[J]. Oceanologia et Limnologia Sinica, 2011, 42(6): 899−905.
    [17]
    Wei Qinsheng, Yao Peng, Xu Bochao, et al. Coastal upwelling combined with the river plume regulates hypoxia in the Changjiang Estuary and adjacent inner East China Sea shelf[J]. Journal of Geophysical Research: Oceans, 2021, 126(11): e2021JC017740. doi: 10.1029/2021JC017740
    [18]
    Beardsley R C, Limeburner R, Yu H, et al. Discharge of the Changjiang (Yangtze River) into the East China Sea[J]. Continental Shelf Research, 1985, 4(1/2): 57−76.
    [19]
    Wang Baodong. Hydromorphological mechanisms leading to hypoxia off the Changjiang estuary[J]. Marine Environmental Research, 2009, 67(1): 53−58. doi: 10.1016/j.marenvres.2008.11.001
    [20]
    李道季, 张经, 黄大吉, 等. 长江口外氧的亏损[J]. 中国科学(D辑), 2002, 32(8): 686−694.

    Li Daoji, Zhang Jing, Huang Daji, et al. Oxygen depletion off the Changjiang (Yangtze River) Estuary[J]. Science in China (Series D), 2002, 32(8): 686−694.
    [21]
    李宏亮, 陈建芳, 卢勇, 等. 长江口水体溶解氧的季节变化及底层低氧成因分析[J]. 海洋学研究, 2011, 29(3): 78−87.

    Li Hongliang, Chen Jianfang, Lu Yong, et al. Seasonal variation of DO and formation mechanism of bottom water hypoxia of Changjiang River Estuary[J]. Journal of Marine Sciences, 2011, 29(3): 78−87.
    [22]
    周锋, 钱周奕, 刘安琪, 等. 长江口及邻近海域底层水体低氧物理机制的研究进展[J]. 海洋学研究, 2021, 39(4): 22−38.

    Zhou Feng, Qian Zhouyi, Liu Anqi, et al. Recent progress on the studies of the physical mechanisms of hypoxia off the Changjiang (Yangtze River) Estuary[J]. Journal of Marine Sciences, 2021, 39(4): 22−38.
    [23]
    Chen C C, Shiah F K, Gong G C, et al. Impact of upwelling on phytoplankton blooms and hypoxia along the Chinese coast in the East China Sea[J]. Marine Pollution Bulletin, 2021, 167: 112288. doi: 10.1016/j.marpolbul.2021.112288
    [24]
    Wang Yingqi, Wang Kui, Wu Di, et al. Subsurface hypoxia observation in the Changjiang Estuary based on a wave-driven profiler, satellite data, and machine learning[J]. Journal of Geophysical Research: Oceans, 2025, 130(5): e2024JC022142. doi: 10.1029/2024JC022142
    [25]
    He Biyan, Dai Minhan, Zhai Weidong, et al. Hypoxia in the upper reaches of the Pearl River Estuary and its maintenance mechanisms: a synthesis based on multiple year observations during 2000—2008[J]. Marine Chemistry, 2014, 167: 13−24. doi: 10.1016/j.marchem.2014.07.003
    [26]
    Li Xiuqin, Lu Chuqian, Zhang Yafeng, et al. Low dissolved oxygen in the Pearl River estuary in summer: long-term spatio-temporal patterns, trends, and regulating factors[J]. Marine Pollution Bulletin, 2020, 151: 110814. doi: 10.1016/j.marpolbul.2019.110814
    [27]
    Qian Wei, Zhang Shi, Tong Chuan, et al. Long-term patterns of dissolved oxygen dynamics in the Pearl River Estuary[J]. Journal of Geophysical Research: Biogeosciences, 2022, 127(7): e2022JG006967. doi: 10.1029/2022JG006967
    [28]
    Guo Xianghui, Su Jianzhong, Guo Liguo, et al. Coupling of carbon and oxygen in the Pearl River plume in summer: upwelling, hypoxia, reoxygenation and enhanced acidification[J]. Journal of Geophysical Research: Oceans, 2023, 128(8): e2022JC019326. doi: 10.1029/2022JC019326
    [29]
    Zhai Weidong, Zhao Huade, Zheng Nan, et al. Coastal acidification in summer bottom oxygen-depleted waters in northwestern-northern Bohai Sea from June to August in 2011[J]. Chinese Science Bulletin, 2012, 57(9): 1062−1068. doi: 10.1007/s11434-011-4949-2
    [30]
    Zhai Weidong, Zhao Huade, Su Jilan, et al. Emergence of summertime hypoxia and concurrent carbonate mineral suppression in the central Bohai Sea, China[J]. Journal of Geophysical Research: Biogeosciences, 2019, 124(9): 2768−2785. doi: 10.1029/2019JG005120
    [31]
    Wei Qinsheng, Wang Baodong, Yao Qingzhen, et al. Spatiotemporal variations in the summer hypoxia in the Bohai Sea (China) and controlling mechanisms[J]. Marine Pollution Bulletin, 2019, 138: 125−134. doi: 10.1016/j.marpolbul.2018.11.041
    [32]
    唐景荣, 韦钦胜, 赵宇航, 等. 2021年夏末秋初渤海和北黄海的溶解氧分布与低氧特征[J]. 海洋学报, 2025, 47(3): 13−26.

    Tang Jingrong, Wei Qinsheng, Zhao Yuhang, et al. Distributions of dissolved oxygen and hypoxic characteristics in the Bohai Sea and the northern Yellow Sea during the late summer-early autumn in 2021[J]. Haiyang Xuebao, 2025, 47(3): 13−26.
    [33]
    韦钦胜, 王保栋, 陈建芳, 等. 长江口外缺氧区生消过程和机制的再认知[J]. 中国科学: 地球科学, 2015, 45(2): 187−206.

    Wei Qinsheng, Wang Baodong, Chen Jianfang, et al. Recognition on the forming-vanishing process and underlying mechanisms of the hypoxia off the Yangtze River estuary[J]. Science China Earth Sciences, 2015, 58(4): 628−648.
    [34]
    Zhang Wenxia, Zhou Feng, Huang Daji, et al. Mechanisms controlling interannual variability of seasonal hypoxia off the Changjiang River Estuary[J]. Journal of Geophysical Research: Oceans, 2023, 128(10): e2023JC019996. doi: 10.1029/2023JC019996
    [35]
    王翠, 郭晓峰, 方婧, 等. 闽浙沿岸流扩展范围的季节特征及其对典型海湾的影响[J]. 应用海洋学学报, 2018, 37(1): 1−8.

    Wang Cui, Guo Xiaofeng, Fang Jing, et al. Characteristics of seasonal spatial expansion of Fujian and Zhejiang Coastal Current and their bay effects[J]. Journal of Applied Oceanography, 2018, 37(1): 1−8.
    [36]
    许金电, 黄奖, 邱云, 等. 浙闽沿岸水的空间结构特征及生消过程[J]. 热带海洋学报, 2015, 34(1): 1−7.

    Xu Jindian, Huang Jiang, Qiu Yun, et al. Spatial structure characteristics of Zhejiang and Fujian coastal water and their evolution[J]. Journal of Tropical Oceanography, 2015, 34(1): 1−7.
    [37]
    Yang Dezhou, Yin Baoshu, Liu Zhiliang, et al. Numerical study on the pattern and origins of Kuroshio branches in the bottom water of southern East China Sea in summer[J]. Journal of Geophysical Research: Oceans, 2012, 117(C2): C02014.
    [38]
    Yang Dezhou, Yin Baoshu, Chai Fei, et al. The onshore intrusion of Kuroshio subsurface water from February to July and a mechanism for the intrusion variation[J]. Progress in Oceanography, 2018, 167: 97−115. doi: 10.1016/j.pocean.2018.08.004
    [39]
    Yang Dezhou, Yin Baoshu, Sun Junchuan, et al. Numerical study on the origins and the forcing mechanism of the phosphate in upwelling areas off the coast of Zhejiang province, China in summer[J]. Journal of Marine Systems, 2013, 123−124: 1−18.
    [40]
    Chen C T A, Wang Shulun. Carbon, alkalinity and nutrient budgets on the East China Sea continental shelf[J]. Journal of Geophysical Research: Oceans, 1999, 104(C9): 20675−20686. doi: 10.1029/1999JC900055
    [41]
    宋金明, 袁华茂. 黑潮与邻近东海生源要素的交换及其生态环境效应[J]. 海洋与湖沼, 2017, 48(6): 1169−1177.

    Song Jinming, Yuan Huamao. Exchange and ecological effects of biogenic elements between Kuroshio and adjacent East China Sea[J]. Oceanologia et Limnologia Sinica, 2017, 48(6): 1169−1177.
    [42]
    Xu Lingjing, Yang Dezhou, Benthuysen J A, et al. Key dynamical factors driving the Kuroshio subsurface water to reach the Zhejiang coastal area[J]. Journal of Geophysical Research: Oceans, 2018, 123(12): 9061−9081. doi: 10.1029/2018JC014219
    [43]
    赵瑞祥, 刘志亮. 台湾东北部黑潮次表层水入侵的季节变化规律[J]. 海洋学报, 2014, 36(1): 20−27.

    Zhao Ruixiang, Liu Zhiliang. The seasonal variation of the Kuroshio subsurface water intrusion northeast of Taiwan[J]. Haiyang Xuebao, 2014, 36(1): 20−27.
    [44]
    Zhou Peng, Song Xiuxian, Yuan Yongquan, et al. Intrusion pattern of the Kuroshio Subsurface Water onto the East China Sea continental shelf traced by dissolved inorganic iodine species during the spring and autumn of 2014[J]. Marine Chemistry, 2017, 196: 24−34. doi: 10.1016/j.marchem.2017.07.006
    [45]
    Lie H J, Cho C H, Lee J H, et al. Structure and eastward extension of the Changjiang River plume in the East China Sea[J]. Journal of Geophysical Research: Oceans, 2003, 108(C3): 3077.
    [46]
    Liu Zhiqiang, Gan Jianping, Wu H, et al. Advances on coastal and estuarine circulations around the Changjiang Estuary in the recent decades (2000—2020)[J]. Frontiers in Marine Science, 2021, 8: 615929. doi: 10.3389/fmars.2021.615929
    [47]
    Miao Yanyi, Wang Bin, Li Dewang, et al. Observational studies of the effects of wind mixing and biological process on the vertical distribution of dissolved oxygen off the Changjiang Estuary[J]. Frontiers in Marine Science, 2023, 10: 1081688. doi: 10.3389/fmars.2023.1081688
    [48]
    周锋, 黄大吉, 倪晓波, 等. 影响长江口毗邻海域低氧区多种时间尺度变化的水文因素[J]. 生态学报, 2010, 30(17): 4728−4740.

    Zhou Feng, Huang Daji, Ni Xiaobo, et al. Hydrographic analysis on the multi-time scale variability of hypoxia adjacent to the Changjiang River Estuary[J]. Acta Ecologica Sinica, 2010, 30(17): 4728−4740.
    [49]
    韦钦胜, 王保栋, 于志刚, 等. 夏季长江口外缺氧频发的机制及酸化问题初探[J]. 中国科学: 地球科学, 2017, 47(1): 114−134.

    Wei Qinsheng, Wang Baodong, Yu Zhigang, et al. Mechanisms leading to the frequent occurrences of hypoxia and a preliminary analysis of the associated acidification off the Changjiang estuary in summer[J]. Science China Earth Sciences, 2017, 60(2): 360−381.
    [50]
    Wei Qinsheng, Yuan Yongquan, Song Shuqun, et al. Spatial variability of hypoxia and coupled physical-biogeochemical controls off the Changjiang (Yangtze River) Estuary in summer[J]. Frontiers in Marine Science, 2022, 9: 987368. doi: 10.3389/fmars.2022.987368
    [51]
    韦钦胜, 于志刚, 夏长水, 等. 夏季长江口外低氧区的动态特征分析[J]. 海洋学报, 2011, 33(6): 100−109.

    Wei Qinsheng, Yu Zhigang, Xia Changshui, et al. A preliminary analysis on the dynamic characteristics of the hypoxic zone adjacent to the Changjiang Estuary in summer[J]. Haiyang Xuebao, 2011, 33(6): 100−109.
    [52]
    Wang Baodong, Wei Qinsheng, Chen Jianfang, et al. Annual cycle of hypoxia off the Changjiang (Yangtze River) Estuary[J]. Marine Environmental Research, 2012, 77: 1−5. doi: 10.1016/j.marenvres.2011.12.007
    [53]
    张以恳, 翁学传, 张启龙, 等. 台湾海峡的底层流[J]. 海洋与湖沼, 1991, 22(2): 124−131.

    Zhang Yiken, Weng Xuechuan, Zhang Qilong, et al. Bottom current in Taiwan Strait[J]. Oceanologia et Limnologia Sinica, 1991, 22(2): 124−131.
    [54]
    Qi Jifeng, Yin Baoshu, Zhang Qilong, et al. Seasonal variation of the Taiwan Warm Current Water and its underlying mechanism[J]. Chinese Journal of Oceanology and Limnology, 2017, 35(5): 1045−1060. doi: 10.1007/s00343-017-6018-4
    [55]
    杨德周, 尹宝树, 侯一筠, 等. 黑潮入侵东海陆架途径及其影响研究进展[J]. 海洋与湖沼, 2017, 48(6): 1196−1207.

    Yang Dezhou, Yin Baoshu, Hou Yijun, et al. Advance in research on Kuroshio intrusion and its ecological influence on the continental shelf of East China Sea[J]. Oceanologia et Limnologia Sinica, 2017, 48(6): 1196−1207.
    [56]
    苏育嵩, 李凤歧, 马鹤来, 等. 东海北部区域底层冷水团的形成及其季节变化[J]. 青岛海洋大学学报, 1989, 19(1): 1−14.

    Su Yusong, Li Fengqi, Ma Helai, et al. Formation and seasonal variation of bottom cold water mass in northern area of the East China Sea[J]. Journal of Ocean University of Qingdao, 1989, 19(1): 1−14.
    [57]
    于非, 张志欣, 刁新源, 等. 黄海冷水团演变过程及其与邻近水团关系的分析[J]. 海洋学报, 2006, 28(5): 26−34.

    Yu Fei, Zhang Zhixin, Diao Xinyuan, et al. Analysis of evolution of the Huanghai Sea Cold Water Mass and its relationship with adjacent water masses[J]. Haiyang Xuebao, 2006, 28(5): 26−34.
    [58]
    Grasshoff K, Kremling K, Ehrhardt M. Methods of Seawater Analysis[M]. New York: Wiley-VCH, 1999.
    [59]
    Weiss R F. The solubility of nitrogen, oxygen and argon in water and seawater[J]. Deep Sea Research and Oceanographic Abstracts, 1970, 17(4): 721−735. doi: 10.1016/0011-7471(70)90037-9
    [60]
    Pytkowicx R M. On the apparent oxygen utilization and the preformed phosphate in the oceans[J]. Limnology and Oceanography, 1971, 16(1): 39−42. doi: 10.4319/lo.1971.16.1.0039
    [61]
    Zhang Jing, Yu Zhigang, Liu Sumei, et al. Dynamics of nutrient elements in three estuaries of North China: the Luanhe, Shuangtaizihe, and Yalujiang[J]. Estuaries, 1997, 20(1): 110−123. doi: 10.2307/1352725
    [62]
    Parsons T R, Maita Y, Lalli C M. A Manual of Chemical and Biological Methods for Seawater Analysis[M]. Oxford: Pergamon Press, 1984.
    [63]
    Simpson J H, Bowers D. Models of stratification and frontal movement in shelf seas[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1981, 28(7): 727−738. doi: 10.1016/0198-0149(81)90132-1
    [64]
    Simpson J H, Sharples J. Introduction to the Physical and Biological Oceanography of Shelf Seas[M]. Cambridge: Cambridge University Press, 2012.
    [65]
    Wei Qinsheng, Xin Ming, Meng Qicheng, et al. Upwelling regulates nutrient supply and phytoplankton chlorophyll-a regime on the East China Sea shelf during late summer[J]. Journal of Geophysical Research: Oceans, 2024, 129(8): e2023JC020569. doi: 10.1029/2023JC020569
    [66]
    Lian Ergang, Yang Shouye, Wu Hui, et al. Kuroshio subsurface water feeds the wintertime Taiwan Warm Current on the inner East China Sea shelf[J]. Journal of Geophysical Research: Oceans, 2016, 121(7): 4790−4803. doi: 10.1002/2016JC011869
    [67]
    Su Jilan, Pan Yuqiu. On the shelf circulation north of Taiwan[J]. Acta Oceanologica Sinica, 1987, 6(S1): 1−20.
    [68]
    韦钦胜, 王辉武, 葛人峰, 等. 黄海和东海分界线附近水文、化学特征的季节性演替[J]. 海洋与湖沼, 2013, 44(5): 1170−1181.

    Wei Qinsheng, Wang Huiwu, Ge Renfeng, et al. Chemical hydrography and seasonal succession in the border between Yellow Sea and East China Sea[J]. Oceanologia et Limnologia Sinica, 2013, 44(5): 1170−1181.
    [69]
    Qian Wei, Dai Minhan, Xu Min, et al. Non-local drivers of the summer hypoxia in the East China Sea off the Changjiang Estuary[J]. Estuarine, Coastal and Shelf Science, 2017, 198: 393−399. doi: 10.1016/j.ecss.2016.08.032
    [70]
    Wang Hongjie, Dai Minhan, Liu Jinwen, et al. Eutrophication-driven hypoxia in the East China Sea off the Changjiang Estuary[J]. Environmental Science & Technology, 2016, 50(5): 2255−2263.
    [71]
    Dai Minhan, Zhao Yangyang, Chai Fei, et al. Persistent eutrophication and hypoxia in the coastal ocean[J]. Cambridge Prisms: Coastal Futures, 2023, 1: e19. doi: 10.1017/cft.2023.7
    [72]
    吴林妮, 韦钦胜, 辛明, 等. 春季东海营养盐的空间分布格局和控制机制[J]. 海洋科学进展, 2023, 41(4): 622−636.

    Wu Linni, Wei Qinsheng, Xin Ming, et al. Spatial distribution patterns of nutrients and controlling mechanisms in the East China Sea during spring[J]. Advances in Marine Science, 2023, 41(4): 622−636.
    [73]
    Ding Hui, Wei Qinsheng, Xin Ming, et al. An inner shelf penetrating front and its potential biogeochemical effects in the East China Sea during October[J]. Acta Oceanologica Sinica, 2024, 43(11): 1−11. doi: 10.1007/s13131-024-2432-6
    [74]
    Dong Shuhang, Liu Sumei, Ren Jingling, et al. Nutrient dynamics and cross shelf transport in the East China Sea[J]. Acta Oceanologica Sinica, 2024, 43(10): 48−62. doi: 10.1007/s13131-024-2419-3
    [75]
    Wang Baodong, Wang Xiulin. Chemical hydrography of coastal upwelling in the East China Sea[J]. Chinese Journal of Oceanology and Limnology, 2007, 25(1): 16−26. doi: 10.1007/s00343-007-0016-x
    [76]
    Hong Huasheng, Chai Fei, Zhang Caiyuan, et al. An overview of physical and biogeochemical processes and ecosystem dynamics in the Taiwan Strait[J]. Continental Shelf Research, 2011, 31(6): S3−S12. doi: 10.1016/j.csr.2011.02.002
    [77]
    Zhou Feng, Chai Fei, Huang Daji, et al. Coupling and decoupling of high biomass phytoplankton production and hypoxia in a highly dynamic coastal system: the Changjiang (Yangtze River) Estuary[J]. Frontiers in Marine Science, 2020, 7: 259. doi: 10.3389/fmars.2020.00259
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (192) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return