Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 47 Issue 11
Nov.  2025
Turn off MathJax
Article Contents
Meng Jiayu,Wang Shengqiang,Sun Deyong, et al. Satellite remote sensing monitoring of chlorophyll a mass concentration in a typical marine ranching area of Gouqi Island[J]. Haiyang Xuebao,2025, 47(11):141–153 doi: 10.12284/hyxb2025138
Citation: Meng Jiayu,Wang Shengqiang,Sun Deyong, et al. Satellite remote sensing monitoring of chlorophyll a mass concentration in a typical marine ranching area of Gouqi Island[J]. Haiyang Xuebao,2025, 47(11):141–153 doi: 10.12284/hyxb2025138

Satellite remote sensing monitoring of chlorophyll a mass concentration in a typical marine ranching area of Gouqi Island

doi: 10.12284/hyxb2025138
  • Received Date: 2025-07-15
  • Rev Recd Date: 2025-10-10
  • Available Online: 2025-10-22
  • Publish Date: 2025-11-30
  • Water quality monitoring in marine ranching areas is of vital importance for their high-quality and sustainable development. Chlorophyll a (Chl a), an important indicator of phytoplankton biomass and water eutrophication, plays a key role in environmental assessment and risk management. Satellite remote sensing, characterized by rapid observation and wide spatiotemporal coverage, offers significant advantages. However, dedicated remote sensing products for marine ranching areas remain lacking, and aquaculture facilities can interfere with satellite signals, introducing errors in the remote sensing inversion of Chl a mass concentration. Using the Gouqi Island marine ranching area (a mussel aquaculture ranching area) in Shengsi, Zhejiang Province, as a case study, Chl a mass concentration inversion models for Landsat8 OLI images were constructed based on in situ data acquired during multiple cruises. The influence of aquaculture facilities on remote sensing reflectance was analyzed and effectively corrected. Validation results demonstrated the good performance of the inversion model. Using the corrected reflectance data, high-precision Chl a mass concentration products were retrieved for the mussel aquaculture ranching area and adjacent waters, and their spatiotemporal variations and potential influencing factors were examined. This study provides methodological support and a technical foundation for high-precision remote sensing monitoring of Chl a mass concentration in mussel aquaculture ranching areas.
  • loading
  • [1]
    Taylor M D, Chick R C, Lorenzen K, et al. Fisheries enhancement and restoration in a changing world[J]. Fisheries Research, 2017, 186: 407−412. doi: 10.1016/j.fishres.2016.10.004
    [2]
    Du Yuanwei, Li Biying, Quan Xijian. Construction and application of DPPD model for evaluating marine resources and environment carrying capacity in China[J]. Journal of Cleaner Production, 2020, 252: 119655. doi: 10.1016/j.jclepro.2019.119655
    [3]
    Kong Fanzhen, Cui Wanglai, Xi Henghui. Spatial-temporal variation, decoupling effects and prediction of marine fishery based on modified ecological footprint model: case study of 11 coastal provinces in China[J]. Ecological Indicators, 2021, 132: 108271. doi: 10.1016/j.ecolind.2021.108271
    [4]
    Halpern B S, Frazier M, Potapenko J, et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean[J]. Nature Communications, 2015, 6(1): 7615. doi: 10.1038/ncomms8615
    [5]
    林承刚, 杨红生, 陈鹰, 等. 现代化海洋牧场建设与发展——第230期双清论坛学术综述[J]. 中国科学基金, 2021, 35(1): 143−152.

    Lin Chenggang, Yang Hongsheng, Chen Ying, et al. Construction and development of modern marine ranching—academic review of the 230th Shuangqing Forum[J]. Bulletin of National Natural Science Foundation of China, 2021, 35(1): 143−152.
    [6]
    Du Yuanwei, Sun Xuelei. Influence paths of marine ranching ecological security in China based on probabilistic linguistic term sets and qualitative comparative analysis[J]. International Journal of Fuzzy Systems, 2021, 23(1): 228−242. doi: 10.1007/s40815-020-00894-x
    [7]
    Li Zepeng, Chen Yan, Wang Gang, et al. Ecological carrying capacity and carbon sequestration potential of bivalve shellfish in marine ranching: a case study in Bohai Bay, China[J]. Frontiers in Marine Science, 2023, 10: 1174235. doi: 10.3389/fmars.2023.1174235
    [8]
    唐启升, 蒋增杰, 毛玉泽. 渔业碳汇与碳汇渔业定义及其相关问题的辨析[J]. 渔业科学进展, 2022, 43(5): 1−7.

    Tang Qisheng, Jiang Zengjie, Mao Yuze. Clarification on the definitions and its relevant issues of fisheries carbon sink and carbon sink fisheries[J]. Progress in Fishery Sciences, 2022, 43(5): 1−7.
    [9]
    唐启升, 刘慧. 海洋渔业碳汇及其扩增战略[J]. 中国工程科学, 2016, 18(3): 68−73. doi: 10.15302/J-SSCAE-2016.03.011

    Tang Qisheng, Liu Hui. Strategy for carbon sink and its amplification in marine fisheries[J]. Strategic Study of CAE, 2016, 18(3): 68−73. doi: 10.15302/J-SSCAE-2016.03.011
    [10]
    Wu Bowen, Dai Shiniu, Wen Xinli, et al. Chlorophyll-nutrient relationship changes with lake type, season and small-bodied zooplankton in a set of subtropical shallow lakes[J]. Ecological Indicators, 2022, 135: 108571. doi: 10.1016/j.ecolind.2022.108571
    [11]
    铁凝, 刘秉义. 基于海洋激光雷达和BP神经网络的叶绿素剖面反演算法[J]. 光学学报, 2023, 43(24): 2401007. doi: 10.3788/AOS230800

    Tie Ning, Liu Bingyi. Chlorophyll profile retrieval algorithm based on oceanographic lidar and BP neural network[J]. Acta Optica Sinica, 2023, 43(24): 2401007. doi: 10.3788/AOS230800
    [12]
    谢婷婷, 陈芸芝, 卢文芳. 基于三波段生物光学模型反演闽江下游叶绿素a[J]. 激光与光电子学进展, 2020, 57(7): 071701.

    Xie Tingting, Chen Yunzhi, Lu Wenfang. Retrieval of chlorophyll-a in lower reaches of the Minjiang River Via three-band bio-optical model[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071701.
    [13]
    Smith V H. Responses of estuarine and coastal marine phytoplankton to nitrogen and phosphorus enrichment[J]. Limnology and Oceanography, 2006, 51(1part2): 377−384. doi: 10.4319/lo.2006.51.1_part_2.0377
    [14]
    Arias-Rodriguez L F, Duan Zheng, Sepúlveda R, et al. Monitoring water quality of Valle de Bravo reservoir, Mexico, using entire lifespan of MERIS data and machine learning approaches[J]. Remote Sensing, 2020, 12(10): 1586. doi: 10.3390/rs12101586
    [15]
    潘雨薇, 陈晶晶, 孙亮, 等. 多角度偏振成像仪的海洋场景定标与水色反演[J]. 光学学报, 2024, 44(18): 1801008. doi: 10.3788/AOS231924

    Pan Yuwei, Chen Jingjing, Sun Liang, et al. Ocean sites calibration and water color retrieval for directional polarimetric camera[J]. Acta Optica Sinica, 2024, 44(18): 1801008. doi: 10.3788/AOS231924
    [16]
    Li Yuan, Zhang Yunlin, Shi Kun, et al. Spatiotemporal dynamics of chlorophyll-a in a large reservoir as derived from Landsat 8 OLI data: understanding its driving and restrictive factors[J]. Environmental Science and Pollution Research, 2018, 25(2): 1359−1374. doi: 10.1007/s11356-017-0536-7
    [17]
    罗婕纯一, 秦龙君, 毛鹏, 等. 水质遥感监测的关键要素叶绿素a的反演算法研究进展[J]. 遥感技术与应用, 2021, 36(3): 473−488.

    Luo Jiechunyi, Qin Longjun, Mao Peng, et al. Research progress in the retrieval algorithms for chlorophyll-a, a key element of water quality monitoring by remote sensing[J]. Remote Sensing Technology and Application, 2021, 36(3): 473−488.
    [18]
    O’Reilly J E, Werdell P J. Chlorophyll algorithms for ocean color sensors-OC4, OC5 & OC6[J]. Remote Sensing of Environment, 2019, 229: 32−47. doi: 10.1016/j.rse.2019.04.021
    [19]
    Le Chengfeng, Hu Chuanmin, Cannizzaro J, et al. Evaluation of chlorophyll-a remote sensing algorithms for an optically complex estuary[J]. Remote Sensing of Environment, 2013, 129: 75−89. doi: 10.1016/j.rse.2012.11.001
    [20]
    Dasgupta S, Singh R P, Kafatos M. Comparison of global chlorophyll concentrations using MODIS data[J]. Advances in Space Research, 2009, 43(7): 1090−1100. doi: 10.1016/j.asr.2008.11.009
    [21]
    Hu Jingwen, Liu Xiaoyan, Wang Qixiang, et al. Analysis of retrieval accuracy and spatial-temporal variation of chlorophyll-a concentration in Bohai Sea based on GOCI[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 13202−13216. doi: 10.1109/JSTARS.2024.3414588
    [22]
    Yin Ziyao, Li Junsheng, Zhang Bing, et al. Increase in chlorophyll-a concentration in Lake Taihu from 1984 to 2021 based on Landsat observations[J]. Science of the Total Environment, 2023, 873: 162168. doi: 10.1016/j.scitotenv.2023.162168
    [23]
    Cao Zhigang, Ma Ronghua, Liu Miao, et al. Harmonized chlorophyll-a retrievals in inland lakes from Landsat-8/9 and Sentinel 2A/B virtual constellation through machine learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4209916.
    [24]
    Gao Shike, Ren Shuangning, Xie Bin, et al. Interaction between sea surface chlorophyll a and seawater indicators in the sea ranching area: a case study in Haizhou Bay[J]. Regional Studies in Marine Science, 2022, 56: 102687. doi: 10.1016/j.rsma.2022.102687
    [25]
    Gao Shike, Shi Yixi, Zhang Shuo, et al. Temporal and spatial variation patterns of chlorophyll a in marine ranching under global interannual events[J]. Marine Environmental Research, 2024, 202: 106760. doi: 10.1016/j.marenvres.2024.106760
    [26]
    李珺, 邓邦平, 刘章彬, 等. 舟山枸杞岛大型海藻凋落物分解特征及其影响因素[J]. 海洋环境科学, 2023, 42(2): 271−279.

    Li Jun, Deng Bangping, Liu Zhangbin, et al. Litter decomposition characteristics and influencing factors of macroalgae in Gouqi island of Zhoushan[J]. Marine Environmental Science, 2023, 42(2): 271−279.
    [27]
    Cai Lina, Yin Jie, Yan Xiaojun, et al. The environmental analysis and site selection of mussel and large yellow croaker aquaculture areas based on high resolution remote sensing[J]. Acta Oceanologica Sinica, 2024, 43(3): 66−86. doi: 10.1007/s13131-023-2284-5
    [28]
    邓明星. 贻贝筏式养殖对海域水动力及浮游植物生态系统影响[D]. 上海: 上海海洋大学, 2016: 11−12.

    Deng Mingxing. Effects of raft aquaculture on dynamics and phytoplankton ecosystem[D]. Shanghai: Shanghai Ocean University, 2016: 11−12.
    [29]
    朱帅麟, 单晓鸾, 刘明智, 等. 贻贝筏式养殖区两类端足目生物分布特征及其与环境因子关系[J]. 水生生物学报, 2024, 48(7): 1159−1169.

    Zhu Shuailin, Shan Xiaoluan, Liu Mingzhi, et al. Distribution characteristics and environmental factors for two categories of amphipods in mussel-rafts culture area[J]. Acta Hydrobiologica Sinica, 2024, 48(7): 1159−1169.
    [30]
    唐军武, 田国良, 汪小勇, 等. 水体光谱测量与分析I: 水面以上测量法[J]. 遥感学报, 2004, 8(1): 37−44.

    Tang Junwu, Tian Guoliang, Wang Xiaoyong, et al. The methods of water spectra measurement and analysis I: above-water method[J]. Journal of Remote Sensing, 2004, 8(1): 37−44.
    [31]
    汪小勇, 唐军武, 李铜基, 等. 水面之上法测量水体光谱的关键技术[J]. 海洋技术, 2012, 31(1): 72−76.

    Wang Xiaoyong, Tang Junwu, Li Tongji, et al. Key technologies of water spectra measurements with above-water method[J]. Ocean Technology, 2012, 31(1): 72−76.
    [32]
    Lee Z, Ahn Y H, Mobley C, et al. Removal of surface-reflected light for the measurement of remote-sensing reflectance from an above-surface platform[J]. Optics Express, 2010, 18(25): 26313−26324. doi: 10.1364/OE.18.026313
    [33]
    Vanhellemont Q. Sensitivity analysis of the dark spectrum fitting atmospheric correction for metre- and decametre-scale satellite imagery using autonomous hyperspectral radiometry[J]. Optics Express, 2020, 28(20): 29948−29965. doi: 10.1364/OE.397456
    [34]
    Caballero I, Fernández R, Escalante O M, et al. New capabilities of Sentinel-2A/B satellites combined with in situ data for monitoring small harmful algal blooms in complex coastal waters[J]. Scientific Reports, 2020, 10(1): 8743. doi: 10.1038/s41598-020-65600-1
    [35]
    Wang Shengqiang, Meng Jiayu, Sun Deyong, et al. Correcting aquaculture facility-induced spectral distortions for improved satellite water quality retrieval in marine ranching areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 4208912.
    [36]
    Qiu Zhongfeng. A simple optical model to estimate suspended particulate matter in Yellow River Estuary[J]. Optics Express, 2013, 21(23): 27891−27904. doi: 10.1364/OE.21.027891
    [37]
    周艳蕾, 张传松, 石晓勇, 等. 黄渤海海水中叶绿素a的分布特征及其环境影响因素[J]. 中国环境科学, 2017, 37(11): 4259−4265.

    Zhou Yanlei, Zhang Chuansong, Shi Xiaoyong, et al. Distribution characteristics of chlorophyll a and its influencing environmental factors in Bohai Sea and Yellow Sea[J]. China Environmental Science, 2017, 37(11): 4259−4265.
    [38]
    陈金月, 陈水森, 付娆, 等. 广东省水质现状及驱动因素[J]. 生态学报, 2022, 42(19): 7921−7931.

    Chen Jinyue, Chen Shuisen, Fu Rao, et al. Analysis of water quality status and driving factors in Guangdong Province[J]. Acta Ecologica Sinica, 2022, 42(19): 7921−7931.
    [39]
    Díez-Minguito M, de Swart H E. Relationships between chlorophyll-a and suspended sediment concentration in a high-nutrient load estuary: an observational and idealized modeling approach[J]. Journal of Geophysical Research: Oceans, 2020, 125(3): e2019JC015188. doi: 10.1029/2019JC015188
    [40]
    Giles H, Pilditch C A. Effects of mussel (Perna canaliculus) biodeposit decomposition on benthic respiration and nutrient fluxes[J]. Marine Biology, 2006, 150(2): 261−271. doi: 10.1007/s00227-006-0348-7
    [41]
    Smaal A C, Schellekens T, van Stralen M R, et al. Decrease of the carrying capacity of the Oosterschelde estuary (SW Delta, NL) for bivalve filter feeders due to overgrazing?[J]. Aquaculture, 2013, 404-405: 28–34.
    [42]
    吕旭宁. 滤食性贝类规模化养殖的环境效应及可持续生产模式探索[D]. 上海: 上海海洋大学, 2017: 31–32.

    Lü Xuning. Environmental effects and exploration of sustainable production model of large-scale mariculture of filter-feeding bivalves[D]. Shanghai: Shanghai Ocean University, 2017: 31–32.
    [43]
    Lin Jun, Li Chunyan, Zhang Shouyu. Hydrodynamic effect of a large offshore mussel suspended aquaculture farm[J]. Aquaculture, 2016, 451: 147−155. doi: 10.1016/j.aquaculture.2015.08.039
    [44]
    Chen Yanlin, He Guojin, Yin Ranyu, et al. Comparative study of marine ranching recognition in multi-temporal high-resolution remote sensing images based on DeepLab-v3+ and U-net[J]. Remote Sensing, 2022, 14(22): 5654. doi: 10.3390/rs14225654
    [45]
    Yu Haomiao, Wang Fangxiong, Hou Yingzi, et al. MSARG-net: a multimodal offshore floating raft aquaculture area extraction network for remote sensing images based on multiscale SAR guidance[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 18319−18334. doi: 10.1109/JSTARS.2024.3471925
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article views (159) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return