| Citation: | Meng Jiayu,Wang Shengqiang,Sun Deyong, et al. Satellite remote sensing monitoring of chlorophyll a mass concentration in a typical marine ranching area of Gouqi Island[J]. Haiyang Xuebao,2025, 47(11):141–153 doi: 10.12284/hyxb2025138 |
| [1] |
Taylor M D, Chick R C, Lorenzen K, et al. Fisheries enhancement and restoration in a changing world[J]. Fisheries Research, 2017, 186: 407−412. doi: 10.1016/j.fishres.2016.10.004
|
| [2] |
Du Yuanwei, Li Biying, Quan Xijian. Construction and application of DPPD model for evaluating marine resources and environment carrying capacity in China[J]. Journal of Cleaner Production, 2020, 252: 119655. doi: 10.1016/j.jclepro.2019.119655
|
| [3] |
Kong Fanzhen, Cui Wanglai, Xi Henghui. Spatial-temporal variation, decoupling effects and prediction of marine fishery based on modified ecological footprint model: case study of 11 coastal provinces in China[J]. Ecological Indicators, 2021, 132: 108271. doi: 10.1016/j.ecolind.2021.108271
|
| [4] |
Halpern B S, Frazier M, Potapenko J, et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean[J]. Nature Communications, 2015, 6(1): 7615. doi: 10.1038/ncomms8615
|
| [5] |
林承刚, 杨红生, 陈鹰, 等. 现代化海洋牧场建设与发展——第230期双清论坛学术综述[J]. 中国科学基金, 2021, 35(1): 143−152.
Lin Chenggang, Yang Hongsheng, Chen Ying, et al. Construction and development of modern marine ranching—academic review of the 230th Shuangqing Forum[J]. Bulletin of National Natural Science Foundation of China, 2021, 35(1): 143−152.
|
| [6] |
Du Yuanwei, Sun Xuelei. Influence paths of marine ranching ecological security in China based on probabilistic linguistic term sets and qualitative comparative analysis[J]. International Journal of Fuzzy Systems, 2021, 23(1): 228−242. doi: 10.1007/s40815-020-00894-x
|
| [7] |
Li Zepeng, Chen Yan, Wang Gang, et al. Ecological carrying capacity and carbon sequestration potential of bivalve shellfish in marine ranching: a case study in Bohai Bay, China[J]. Frontiers in Marine Science, 2023, 10: 1174235. doi: 10.3389/fmars.2023.1174235
|
| [8] |
唐启升, 蒋增杰, 毛玉泽. 渔业碳汇与碳汇渔业定义及其相关问题的辨析[J]. 渔业科学进展, 2022, 43(5): 1−7.
Tang Qisheng, Jiang Zengjie, Mao Yuze. Clarification on the definitions and its relevant issues of fisheries carbon sink and carbon sink fisheries[J]. Progress in Fishery Sciences, 2022, 43(5): 1−7.
|
| [9] |
唐启升, 刘慧. 海洋渔业碳汇及其扩增战略[J]. 中国工程科学, 2016, 18(3): 68−73. doi: 10.15302/J-SSCAE-2016.03.011
Tang Qisheng, Liu Hui. Strategy for carbon sink and its amplification in marine fisheries[J]. Strategic Study of CAE, 2016, 18(3): 68−73. doi: 10.15302/J-SSCAE-2016.03.011
|
| [10] |
Wu Bowen, Dai Shiniu, Wen Xinli, et al. Chlorophyll-nutrient relationship changes with lake type, season and small-bodied zooplankton in a set of subtropical shallow lakes[J]. Ecological Indicators, 2022, 135: 108571. doi: 10.1016/j.ecolind.2022.108571
|
| [11] |
铁凝, 刘秉义. 基于海洋激光雷达和BP神经网络的叶绿素剖面反演算法[J]. 光学学报, 2023, 43(24): 2401007. doi: 10.3788/AOS230800
Tie Ning, Liu Bingyi. Chlorophyll profile retrieval algorithm based on oceanographic lidar and BP neural network[J]. Acta Optica Sinica, 2023, 43(24): 2401007. doi: 10.3788/AOS230800
|
| [12] |
谢婷婷, 陈芸芝, 卢文芳. 基于三波段生物光学模型反演闽江下游叶绿素a[J]. 激光与光电子学进展, 2020, 57(7): 071701.
Xie Tingting, Chen Yunzhi, Lu Wenfang. Retrieval of chlorophyll-a in lower reaches of the Minjiang River Via three-band bio-optical model[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071701.
|
| [13] |
Smith V H. Responses of estuarine and coastal marine phytoplankton to nitrogen and phosphorus enrichment[J]. Limnology and Oceanography, 2006, 51(1part2): 377−384. doi: 10.4319/lo.2006.51.1_part_2.0377
|
| [14] |
Arias-Rodriguez L F, Duan Zheng, Sepúlveda R, et al. Monitoring water quality of Valle de Bravo reservoir, Mexico, using entire lifespan of MERIS data and machine learning approaches[J]. Remote Sensing, 2020, 12(10): 1586. doi: 10.3390/rs12101586
|
| [15] |
潘雨薇, 陈晶晶, 孙亮, 等. 多角度偏振成像仪的海洋场景定标与水色反演[J]. 光学学报, 2024, 44(18): 1801008. doi: 10.3788/AOS231924
Pan Yuwei, Chen Jingjing, Sun Liang, et al. Ocean sites calibration and water color retrieval for directional polarimetric camera[J]. Acta Optica Sinica, 2024, 44(18): 1801008. doi: 10.3788/AOS231924
|
| [16] |
Li Yuan, Zhang Yunlin, Shi Kun, et al. Spatiotemporal dynamics of chlorophyll-a in a large reservoir as derived from Landsat 8 OLI data: understanding its driving and restrictive factors[J]. Environmental Science and Pollution Research, 2018, 25(2): 1359−1374. doi: 10.1007/s11356-017-0536-7
|
| [17] |
罗婕纯一, 秦龙君, 毛鹏, 等. 水质遥感监测的关键要素叶绿素a的反演算法研究进展[J]. 遥感技术与应用, 2021, 36(3): 473−488.
Luo Jiechunyi, Qin Longjun, Mao Peng, et al. Research progress in the retrieval algorithms for chlorophyll-a, a key element of water quality monitoring by remote sensing[J]. Remote Sensing Technology and Application, 2021, 36(3): 473−488.
|
| [18] |
O’Reilly J E, Werdell P J. Chlorophyll algorithms for ocean color sensors-OC4, OC5 & OC6[J]. Remote Sensing of Environment, 2019, 229: 32−47. doi: 10.1016/j.rse.2019.04.021
|
| [19] |
Le Chengfeng, Hu Chuanmin, Cannizzaro J, et al. Evaluation of chlorophyll-a remote sensing algorithms for an optically complex estuary[J]. Remote Sensing of Environment, 2013, 129: 75−89. doi: 10.1016/j.rse.2012.11.001
|
| [20] |
Dasgupta S, Singh R P, Kafatos M. Comparison of global chlorophyll concentrations using MODIS data[J]. Advances in Space Research, 2009, 43(7): 1090−1100. doi: 10.1016/j.asr.2008.11.009
|
| [21] |
Hu Jingwen, Liu Xiaoyan, Wang Qixiang, et al. Analysis of retrieval accuracy and spatial-temporal variation of chlorophyll-a concentration in Bohai Sea based on GOCI[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 13202−13216. doi: 10.1109/JSTARS.2024.3414588
|
| [22] |
Yin Ziyao, Li Junsheng, Zhang Bing, et al. Increase in chlorophyll-a concentration in Lake Taihu from 1984 to 2021 based on Landsat observations[J]. Science of the Total Environment, 2023, 873: 162168. doi: 10.1016/j.scitotenv.2023.162168
|
| [23] |
Cao Zhigang, Ma Ronghua, Liu Miao, et al. Harmonized chlorophyll-a retrievals in inland lakes from Landsat-8/9 and Sentinel 2A/B virtual constellation through machine learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4209916.
|
| [24] |
Gao Shike, Ren Shuangning, Xie Bin, et al. Interaction between sea surface chlorophyll a and seawater indicators in the sea ranching area: a case study in Haizhou Bay[J]. Regional Studies in Marine Science, 2022, 56: 102687. doi: 10.1016/j.rsma.2022.102687
|
| [25] |
Gao Shike, Shi Yixi, Zhang Shuo, et al. Temporal and spatial variation patterns of chlorophyll a in marine ranching under global interannual events[J]. Marine Environmental Research, 2024, 202: 106760. doi: 10.1016/j.marenvres.2024.106760
|
| [26] |
李珺, 邓邦平, 刘章彬, 等. 舟山枸杞岛大型海藻凋落物分解特征及其影响因素[J]. 海洋环境科学, 2023, 42(2): 271−279.
Li Jun, Deng Bangping, Liu Zhangbin, et al. Litter decomposition characteristics and influencing factors of macroalgae in Gouqi island of Zhoushan[J]. Marine Environmental Science, 2023, 42(2): 271−279.
|
| [27] |
Cai Lina, Yin Jie, Yan Xiaojun, et al. The environmental analysis and site selection of mussel and large yellow croaker aquaculture areas based on high resolution remote sensing[J]. Acta Oceanologica Sinica, 2024, 43(3): 66−86. doi: 10.1007/s13131-023-2284-5
|
| [28] |
邓明星. 贻贝筏式养殖对海域水动力及浮游植物生态系统影响[D]. 上海: 上海海洋大学, 2016: 11−12.
Deng Mingxing. Effects of raft aquaculture on dynamics and phytoplankton ecosystem[D]. Shanghai: Shanghai Ocean University, 2016: 11−12.
|
| [29] |
朱帅麟, 单晓鸾, 刘明智, 等. 贻贝筏式养殖区两类端足目生物分布特征及其与环境因子关系[J]. 水生生物学报, 2024, 48(7): 1159−1169.
Zhu Shuailin, Shan Xiaoluan, Liu Mingzhi, et al. Distribution characteristics and environmental factors for two categories of amphipods in mussel-rafts culture area[J]. Acta Hydrobiologica Sinica, 2024, 48(7): 1159−1169.
|
| [30] |
唐军武, 田国良, 汪小勇, 等. 水体光谱测量与分析I: 水面以上测量法[J]. 遥感学报, 2004, 8(1): 37−44.
Tang Junwu, Tian Guoliang, Wang Xiaoyong, et al. The methods of water spectra measurement and analysis I: above-water method[J]. Journal of Remote Sensing, 2004, 8(1): 37−44.
|
| [31] |
汪小勇, 唐军武, 李铜基, 等. 水面之上法测量水体光谱的关键技术[J]. 海洋技术, 2012, 31(1): 72−76.
Wang Xiaoyong, Tang Junwu, Li Tongji, et al. Key technologies of water spectra measurements with above-water method[J]. Ocean Technology, 2012, 31(1): 72−76.
|
| [32] |
Lee Z, Ahn Y H, Mobley C, et al. Removal of surface-reflected light for the measurement of remote-sensing reflectance from an above-surface platform[J]. Optics Express, 2010, 18(25): 26313−26324. doi: 10.1364/OE.18.026313
|
| [33] |
Vanhellemont Q. Sensitivity analysis of the dark spectrum fitting atmospheric correction for metre- and decametre-scale satellite imagery using autonomous hyperspectral radiometry[J]. Optics Express, 2020, 28(20): 29948−29965. doi: 10.1364/OE.397456
|
| [34] |
Caballero I, Fernández R, Escalante O M, et al. New capabilities of Sentinel-2A/B satellites combined with in situ data for monitoring small harmful algal blooms in complex coastal waters[J]. Scientific Reports, 2020, 10(1): 8743. doi: 10.1038/s41598-020-65600-1
|
| [35] |
Wang Shengqiang, Meng Jiayu, Sun Deyong, et al. Correcting aquaculture facility-induced spectral distortions for improved satellite water quality retrieval in marine ranching areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 4208912.
|
| [36] |
Qiu Zhongfeng. A simple optical model to estimate suspended particulate matter in Yellow River Estuary[J]. Optics Express, 2013, 21(23): 27891−27904. doi: 10.1364/OE.21.027891
|
| [37] |
周艳蕾, 张传松, 石晓勇, 等. 黄渤海海水中叶绿素a的分布特征及其环境影响因素[J]. 中国环境科学, 2017, 37(11): 4259−4265.
Zhou Yanlei, Zhang Chuansong, Shi Xiaoyong, et al. Distribution characteristics of chlorophyll a and its influencing environmental factors in Bohai Sea and Yellow Sea[J]. China Environmental Science, 2017, 37(11): 4259−4265.
|
| [38] |
陈金月, 陈水森, 付娆, 等. 广东省水质现状及驱动因素[J]. 生态学报, 2022, 42(19): 7921−7931.
Chen Jinyue, Chen Shuisen, Fu Rao, et al. Analysis of water quality status and driving factors in Guangdong Province[J]. Acta Ecologica Sinica, 2022, 42(19): 7921−7931.
|
| [39] |
Díez-Minguito M, de Swart H E. Relationships between chlorophyll-a and suspended sediment concentration in a high-nutrient load estuary: an observational and idealized modeling approach[J]. Journal of Geophysical Research: Oceans, 2020, 125(3): e2019JC015188. doi: 10.1029/2019JC015188
|
| [40] |
Giles H, Pilditch C A. Effects of mussel (Perna canaliculus) biodeposit decomposition on benthic respiration and nutrient fluxes[J]. Marine Biology, 2006, 150(2): 261−271. doi: 10.1007/s00227-006-0348-7
|
| [41] |
Smaal A C, Schellekens T, van Stralen M R, et al. Decrease of the carrying capacity of the Oosterschelde estuary (SW Delta, NL) for bivalve filter feeders due to overgrazing?[J]. Aquaculture, 2013, 404-405: 28–34.
|
| [42] |
吕旭宁. 滤食性贝类规模化养殖的环境效应及可持续生产模式探索[D]. 上海: 上海海洋大学, 2017: 31–32.
Lü Xuning. Environmental effects and exploration of sustainable production model of large-scale mariculture of filter-feeding bivalves[D]. Shanghai: Shanghai Ocean University, 2017: 31–32.
|
| [43] |
Lin Jun, Li Chunyan, Zhang Shouyu. Hydrodynamic effect of a large offshore mussel suspended aquaculture farm[J]. Aquaculture, 2016, 451: 147−155. doi: 10.1016/j.aquaculture.2015.08.039
|
| [44] |
Chen Yanlin, He Guojin, Yin Ranyu, et al. Comparative study of marine ranching recognition in multi-temporal high-resolution remote sensing images based on DeepLab-v3+ and U-net[J]. Remote Sensing, 2022, 14(22): 5654. doi: 10.3390/rs14225654
|
| [45] |
Yu Haomiao, Wang Fangxiong, Hou Yingzi, et al. MSARG-net: a multimodal offshore floating raft aquaculture area extraction network for remote sensing images based on multiscale SAR guidance[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 18319−18334. doi: 10.1109/JSTARS.2024.3471925
|