| Citation: | Ma Jun,Song Jinming,Li Xuegang, et al. The impact of oxygen minimum zone (OMZ) on marine material cycle and its ecological response[J]. Haiyang Xuebao,2025, 47(11):27–41 doi: 10.12284/hyxb2025136 |
| [1] |
Ma Jun, Wen Lilian, Li Xuegang, et al. Different fates of particulate matters driven by marine hypoxia: a case study of oxygen minimum zone in the Western Pacific[J]. Marine Environmental Research, 2024, 200: 106648. doi: 10.1016/j.marenvres.2024.106648
|
| [2] |
Wen Lilian, Ma Jun, Li Xuegang, et al. Low oxygen in the open ocean: a case study of mild oxygen minimum zone (OMZ) in the Western Pacific[J]. Marine Environmental Research, 2025, 207: 107087. doi: 10.1016/j.marenvres.2025.107087
|
| [3] |
Wei Qinsheng, Wang Baodong, Zhang Xuelei, et al. Contribution of the offshore detached Changjiang (Yangtze River) diluted water to the formation of hypoxia in summer[J]. Science of the Total Environment, 2021, 764: 142838. doi: 10.1016/j.scitotenv.2020.142838
|
| [4] |
唐景荣, 韦钦胜, 赵宇航, 等. 2021年夏末秋初渤海和北黄海的溶解氧分布与低氧特征[J]. 海洋学报, 2025, 47(3): 13−26.
Tang Jingrong, Wei Qinsheng, Zhao Yuhang, et al. Distributions of dissolved oxygen and hypoxic characteristics in the Bohai Sea and the northern Yellow Sea during the late summer-early autumn in 2021[J]. Haiyang Xuebao, 2025, 47(3): 13−26.
|
| [5] |
李雅妮, 梁坤瑞, 宋国栋, 等. 长江口、黄河口及黄海近岸沉积物耗氧温度依赖性研究[J]. 海洋学报, 2025, 47(5): 141−149.
Li Yani, Liang Kunrui, Song Guodong, et al. Temperature dependence of sediment oxygen consumption from the Changjiang River Estuary, the Huanghe River Estuary and the Yellow Sea nearshore[J]. Haiyang Xuebao, 2025, 47(5): 141−149.
|
| [6] |
田东凡, 李学刚, 宋金明, 等. 海洋最小含氧带氮流失过程与机制[J]. 应用生态学报, 2019, 30(3): 1047−1056.
Tian Dongfan, Li Xuegang, Song Jinming, et al. Process and mechanism of nitrogen loss in the ocean oxygen minimum zone[J]. Chinese Journal of Applied Ecology, 2019, 30(3): 1047−1056.
|
| [7] |
Schmidtko S, Stramma L, Visbeck M. Decline in global oceanic oxygen content during the past five decades[J]. Nature, 2017, 542(7641): 335−339. doi: 10.1038/nature21399
|
| [8] |
Long M C, Moore J K, Lindsay K, et al. Simulations with the marine biogeochemistry library (MARBL)[J]. Journal of Advances in Modeling Earth Systems, 2021, 13(12): e2021MS002647. doi: 10.1029/2021MS002647
|
| [9] |
Ma Jun, Li Xuegang, Song Jinming, et al. The effects of seawater thermodynamic parameters on the oxygen minimum zone (OMZ) in the tropical western Pacific Ocean[J]. Marine Pollution Bulletin, 2023, 187: 114579. doi: 10.1016/j.marpolbul.2023.114579
|
| [10] |
Auderset A, Moretti S, Taphorn B, et al. Enhanced ocean oxygenation during Cenozoic warm periods[J]. Nature, 2022, 609(7925): 77−82. doi: 10.1038/s41586-022-05017-0
|
| [11] |
Ma Jun, Song Jinming, Li Xuegang, et al. The OMZ and its influence on POC in the Tropical Western Pacific Ocean: based on the survey in March 2018[J]. Frontiers in Earth Science, 2021, 9: 632229. doi: 10.3389/feart.2021.632229
|
| [12] |
Wen Lilian, Ma Jun, Li Xuegang, et al. The carbon transport mediated by the mild oxygen minimum zone (OMZ) in the seamount area of the Western Pacific[J]. Marine Environmental Research, 2025, 204: 106916. doi: 10.1016/j.marenvres.2024.106916
|
| [13] |
Bertagnolli A D, Stewart F J. Microbial niches in marine oxygen minimum zones[J]. Nature Reviews Microbiology, 2018, 16(12): 723−729. doi: 10.1038/s41579-018-0087-z
|
| [14] |
Long A M, Jurgensen S K, Petchel A R, et al. Microbial ecology of oxygen minimum zones amidst ocean deoxygenation[J]. Frontiers in Microbiology, 2021, 12: 748961. doi: 10.3389/fmicb.2021.748961
|
| [15] |
Engel A, Kiko R, Dengler M. Organic matter supply and utilization in oxygen minimum zones[J]. Annual Review of Marine Science, 2022, 14: 355−378. doi: 10.1146/annurev-marine-041921-090849
|
| [16] |
Stief P, Schauberger C, Lund M B, et al. Intracellular nitrate storage by diatoms can be an important nitrogen pool in freshwater and marine ecosystems[J]. Communications Earth & Environment, 2022, 3(1): 154.
|
| [17] |
Sun Xin, Frey C, Garcia-Robledo E, et al. Microbial niche differentiation explains nitrite oxidation in marine oxygen minimum zones[J]. The ISME Journal, 2021, 15(5): 1317−1329. doi: 10.1038/s41396-020-00852-3
|
| [18] |
温丽联, 宋金明, 李学刚, 等. 氟喹诺酮类抗生素的环境污染及其对微生物介导氮循环的影响[J]. 应用生态学报, 2023, 34(11): 3114−3126.
Wen Lilian, Song Jinming, Li Xuegang, et al. Environmental pollution of fluoroquinolones and its relationship with nitrogen cycling mediated by microorganisms[J]. Chinese Journal of Applied Ecology, 2023, 34(11): 3114−3126.
|
| [19] |
尹美玲, 段丽琴, 宋金明, 等. 藿类生物标志物及其对海洋碳氮循环过程的指示[J]. 中国环境科学, 2022, 42(8): 3890−3902.
Yin Meiling, Duan Liqin, Song Jinming, et al. Hopanoids biomarkers and their indications in the marine carbon and nitrogen cycles[J]. China Environmental Science, 2022, 42(8): 3890−3902.
|
| [20] |
Hutchins D A, Capone D G. The marine nitrogen cycle: new developments and global change[J]. Nature Reviews Microbiology, 2022, 20(7): 401−414. doi: 10.1038/s41579-022-00687-z
|
| [21] |
Bristow L A, Callbeck C M, Larsen M, et al. N2 production rates limited by nitrite availability in the Bay of Bengal oxygen minimum zone[J]. Nature Geoscience, 2017, 10(1): 24−29. doi: 10.1038/ngeo2847
|
| [22] |
DeVries T, Deutsch C, Primeau F, et al. Global rates of water-column denitrification derived from nitrogen gas measurements[J]. Nature Geoscience, 2012, 5(8): 547−550. doi: 10.1038/ngeo1515
|
| [23] |
Bristow L A, Dalsgaard T, Tiano L, et al. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters[J]. Proceedings of the National Academy of Sciences, 2016, 113(38): 10601−10606. doi: 10.1073/pnas.1600359113
|
| [24] |
Kuypers M M M, Marchant H K, Kartal B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 2018, 16(5): 263−276. doi: 10.1038/nrmicro.2018.9
|
| [25] |
Breitburg D, Levin L A, Oschlies A, et al. Declining oxygen in the global ocean and coastal waters[J]. Science, 2018, 359(6371): eaam7240. doi: 10.1126/science.aam7240
|
| [26] |
Tracey J C, Babbin A R, Wallace E, et al. All about nitrite: exploring nitrite sources and sinks in the eastern tropical North Pacific oxygen minimum zone[J]. Biogeosciences, 2023, 20(12): 2499−2523. doi: 10.5194/bg-20-2499-2023
|
| [27] |
McCoy D, Damien P, Clements D, et al. Pathways of nitrous oxide production in the eastern tropical south pacific oxygen minimum zone[J]. Global Biogeochemical Cycles, 2023, 37(7): e2022GB007670. doi: 10.1029/2022GB007670
|
| [28] |
Shenoy D M, Suresh I, Uskaikar H, et al. Variability of dissolved oxygen in the Arabian Sea Oxygen Minimum Zone and its driving mechanisms[J]. Journal of Marine Systems, 2020, 204: 103310. doi: 10.1016/j.jmarsys.2020.103310
|
| [29] |
Toyoda S, Terajima K, Yoshida N, et al. Extensive accumulation of nitrous oxide in the oxygen minimum zone in the Bay of Bengal[J]. Global Biogeochemical Cycles, 2023, 37(9): e2022GB007689. doi: 10.1029/2022GB007689
|
| [30] |
Dalsgaard T, Thamdrup B, Farías L, et al. Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific[J]. Limnology and Oceanography, 2012, 57(5): 1331−1346. doi: 10.4319/lo.2012.57.5.1331
|
| [31] |
Karthäuser C, Ahmerkamp S, Marchant H K, et al. Small sinking particles control anammox rates in the Peruvian oxygen minimum zone[J]. Nature Communications, 2021, 12(1): 3235. doi: 10.1038/s41467-021-23340-4
|
| [32] |
Vuillemin A. Nitrogen cycling activities during decreased stratification in the coastal oxygen minimum zone off Namibia[J]. Frontiers in Microbiology, 2023, 14: 1101902. doi: 10.3389/fmicb.2023.1101902
|
| [33] |
Canfield D E, Stewart F J, Thamdrup B, et al. A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast[J]. Science, 2010, 330(6009): 1375−1378. doi: 10.1126/science.1196889
|
| [34] |
Bohlen L, Dale A W, Sommer S, et al. Benthic nitrogen cycling traversing the Peruvian oxygen minimum zone[J]. Geochimica et Cosmochimica Acta, 2011, 75(20): 6094−6111. doi: 10.1016/j.gca.2011.08.010
|
| [35] |
Mashifane T B. Denitrification and anammox shift nutrient stoichiometry and the phytoplankton community structure in the Benguela upwelling system[J]. Journal of Geophysical Research: Oceans, 2021, 126(8): e2021JC017816. doi: 10.1029/2021JC017816
|
| [36] |
Muck S, De Corte D, Clifford E L, et al. Niche differentiation of aerobic and anaerobic ammonia oxidizers in a high latitude deep oxygen minimum zone[J]. Frontiers in Microbiology, 2019, 10: 2141. doi: 10.3389/fmicb.2019.02141
|
| [37] |
De Brabandere L, Canfield D E, Dalsgaard T, et al. Vertical partitioning of nitrogen-loss processes across the oxic-anoxic interface of an oceanic oxygen minimum zone[J]. Environmental Microbiology, 2014, 16(10): 3041−3054. doi: 10.1111/1462-2920.12255
|
| [38] |
马骏, 宋金明, 李学刚, 等. 2018年春季西太平洋Kocebu海山区海水中颗粒态有机碳的地球化学特征[J]. 地球科学进展, 2020, 35(7): 731−741.
Ma Jun, Song Jinming, Li Xuegang, et al. Geochemical characteristics of particulate organic carbon in the Kocebu Seamount waters of the Western Pacific Ocean in spring 2018[J]. Advances in Earth Science, 2020, 35(7): 731−741.
|
| [39] |
Siegel D A, DeVries T, Cetinić I, et al. Quantifying the ocean's biological pump and its carbon cycle impacts on global scales[J]. Annual Review of Marine Science, 2023, 15: 329−356. doi: 10.1146/annurev-marine-040722-115226
|
| [40] |
Jiao Nianzhi, Luo Tingwei, Chen Quanrui, et al. The microbial carbon pump and climate change[J]. Nature Reviews Microbiology, 2024, 22(7): 408−419. doi: 10.1038/s41579-024-01018-0
|
| [41] |
Neukermans G, Bach L T, Butterley A, et al. Quantitative and mechanistic understanding of the open ocean carbonate pump-perspectives for remote sensing and autonomous in situ observation[J]. Earth-Science Reviews, 2023, 239: 104359. doi: 10.1016/j.earscirev.2023.104359
|
| [42] |
Velasco J A, Estrada F, Calderón-Bustamante O, et al. Synergistic impacts of global warming and thermohaline circulation collapse on amphibians[J]. Communications Biology, 2021, 4(1): 141. doi: 10.1038/s42003-021-01665-6
|
| [43] |
Laufkötter C, John J G, Stock C A, et al. Temperature and oxygen dependence of the remineralization of organic matter[J]. Global Biogeochemical Cycles, 2017, 31(7): 1038−1050. doi: 10.1002/2017GB005643
|
| [44] |
Weber T, Bianchi D. Efficient particle transfer to depth in oxygen minimum zones of the Pacific and Indian Oceans[J]. Frontiers in Earth Science, 2020, 8: 376. doi: 10.3389/feart.2020.00376
|
| [45] |
Lengger S K, Rush D, Mayser J P, et al. Dark carbon fixation in the Arabian Sea oxygen minimum zone contributes to sedimentary organic carbon (SOM)[J]. Global Biogeochemical Cycles, 2019, 33(12): 1715−1732. doi: 10.1029/2019GB006282
|
| [46] |
Cavan E L, Henson S A, Belcher A, et al. Role of zooplankton in determining the efficiency of the biological carbon pump[J]. Biogeosciences, 2017, 14(1): 177−186. doi: 10.5194/bg-14-177-2017
|
| [47] |
Kiko R, Hauss H. On the estimation of zooplankton-mediated active fluxes in oxygen minimum zone regions[J]. Frontiers in Marine Science, 2019, 6: 741. doi: 10.3389/fmars.2019.00741
|
| [48] |
Tutasi P, Escribano R. Zooplankton diel vertical migration and downward C flux into the oxygen minimum zone in the highly productive upwelling region off northern Chile[J]. Biogeosciences, 2020, 17(2): 455−473. doi: 10.5194/bg-17-455-2020
|
| [49] |
Archibald K M, Siegel D A, Doney S C. Modeling the impact of zooplankton diel vertical migration on the carbon export flux of the biological pump[J]. Global Biogeochemical Cycles, 2019, 33(2): 181−199. doi: 10.1029/2018GB005983
|
| [50] |
Rixen T, Cowie G, Gaye B, et al. Reviews and syntheses: present, past, and future of the oxygen minimum zone in the northern Indian Ocean[J]. Biogeosciences, 2020, 17(23): 6051−6080. doi: 10.5194/bg-17-6051-2020
|
| [51] |
Jiang Shan, Jin Laiqun, Jin Jie, et al. Exploring feedback mechanisms for nitrogen and organic carbon cycling in tropical coastal zones[J]. Frontiers in Marine Science, 2022, 9: 996655. doi: 10.3389/fmars.2022.996655
|
| [52] |
Hernandez-Ayon J M, Paulmier A, Garcon V, et al. Dynamics of the carbonate system across the Peruvian oxygen minimum zone[J]. Frontiers in Marine Science, 2019, 6: 617. doi: 10.3389/fmars.2019.00617
|
| [53] |
Bretagnon M, Paulmier A, Garçon V, et al. Modulation of the vertical particle transfer efficiency in the oxygen minimum zone off Peru[J]. Biogeosciences, 2018, 15(16): 5093−5111. doi: 10.5194/bg-15-5093-2018
|
| [54] |
Vargas C A, Cantarero S I, Sepúlveda J, et al. A source of isotopically light organic carbon in a low-pH anoxic marine zone[J]. Nature communications, 2021, 12(1): 1604. doi: 10.1038/s41467-021-21871-4
|
| [55] |
Paulmier A, Ruiz-Pino D, Garçon V. CO2 maximum in the oxygen minimum zone (OMZ)[J]. Biogeosciences, 2011, 8(2): 239−252. doi: 10.5194/bg-8-239-2011
|
| [56] |
Wang Zhibo, Li Xuegang, Song Jinming, et al. A new indicator can assess absorption capacity for carbon dioxide and ocean acidification[J]. Communications Earth & Environment, 2025, 6(1): 401.
|
| [57] |
Bianchi D, McCoy D, Yang S. Formulation, optimization, and sensitivity of NitrOMZv1.0, a biogeochemical model of the nitrogen cycle in oceanic oxygen minimum zones[J]. Geoscientific Model Development, 2023, 16(12): 3581−3609. doi: 10.5194/gmd-16-3581-2023
|
| [58] |
Gu Bowei, Liu Jiaxing, Cheung S, et al. Insights into prokaryotic community and its potential functions in nitrogen metabolism in the Bay of Bengal, a pronounced oxygen minimum zone[J]. Microbiology Spectrum, 2022, 10(3): e00892−21.
|
| [59] |
Lomnitz U, Sommer S, Dale A W, et al. Benthic phosphorus cycling in the Peruvian oxygen minimum zone[J]. Biogeosciences, 2016, 13(5): 1367−1386. doi: 10.5194/bg-13-1367-2016
|
| [60] |
Kraal P, Slomp C P, Reed D C, et al. Sedimentary phosphorus and iron cycling in and below the oxygen minimum zone of the northern Arabian Sea[J]. Biogeosciences, 2012, 9(7): 2603−2624. doi: 10.5194/bg-9-2603-2012
|
| [61] |
Klar J K, Schlosser C, Milton J A, et al. Sources of dissolved iron to oxygen minimum zone waters on the Senegalese continental margin in the tropical North Atlantic Ocean: insights from iron isotopes[J]. Geochimica et Cosmochimica Acta, 2018, 236: 60−78.
|
| [62] |
Cram J A, Fuchsman C A, Duffy M E, et al. Slow particle remineralization, rather than suppressed disaggregation, drives efficient flux transfer through the Eastern Tropical North Pacific Oxygen Deficient Zone[J]. Global Biogeochemical Cycles, 2022, 36(1): e2021GB007080. doi: 10.1029/2021GB007080
|
| [63] |
Scholz F, Löscher C R, Fiskal A, et al. Nitrate-dependent iron oxidation limits iron transport in anoxic ocean regions[J]. Earth and Planetary Science Letters, 2016, 454: 272−281. doi: 10.1016/j.jpgl.2016.09.025
|
| [64] |
Vollebregt A, Van Helmond N A G M, Pit S, et al. Trace metals as a redox proxy in Arabian Sea sediments in and below the oxygen minimum zone[J]. Chemical Geology, 2023, 618: 121300. doi: 10.1016/j.chemgeo.2022.121300
|
| [65] |
Linsy P, Nath B N, Mascarenhas-Pereira M B L, et al. Porewater and solid phase speciation geochemistry of phosphorus in the Western Bay of Bengal: an assessment of depositional pathways[J]. Marine Geology, 2023, 463: 107103. doi: 10.1016/j.margeo.2023.107103
|
| [66] |
Moffett J W. Iron(Ⅱ) in the world’s oxygen deficient zones[J]. Chemical Geology, 2021, 580: 120314. doi: 10.1016/j.chemgeo.2021.120314
|
| [67] |
Zhu Kechen, Hopwood M J, Groenenberg J E, et al. Influence of pH and dissolved organic matter on iron speciation and apparent iron solubility in the Peruvian shelf and slope region[J]. Environmental Science & Technology, 2021, 55(13): 9372−9383.
|
| [68] |
Callbeck C M, Canfield D E, Kuypers M M M, et al. Sulfur cycling in oceanic oxygen minimum zones[J]. Limnology and Oceanography, 2021, 66(6): 2360−2392. doi: 10.1002/lno.11759
|
| [69] |
Wen Lilian, Dai Jiajia, Song Jinming, et al. Antibiotic resistance genes (ARGs) in microorganisms and their indications for the nitrogen/sulfur cycle in the East China Sea sediments[J]. Journal of Hazardous Materials, 2025, 488: 137280. doi: 10.1016/j.jhazmat.2025.137280
|
| [70] |
Schunck H, Lavik G, Desai D K, et al. Giant hydrogen sulfide plume in the oxygen minimum zone off Peru supports chemolithoautotrophy[J]. PLoS One, 2013, 8(8): e68661. doi: 10.1371/journal.pone.0068661
|
| [71] |
Menezes L D, Fernandes G L, Mulla A B, et al. Diversity of culturable Sulphur-oxidising bacteria in the oxygen minimum zones of the northern Indian Ocean[J]. Journal of Marine Systems, 2020, 209: 103085. doi: 10.1016/j.jmarsys.2018.05.007
|
| [72] |
Crowe S A, Cox R P, Jones C, et al. Decrypting the sulfur cycle in oceanic oxygen minimum zones[J]. The ISME Journal, 2018, 12(9): 2322−2329. doi: 10.1038/s41396-018-0149-2
|
| [73] |
Zhou Zhichao, Tran P Q, Cowley E S, et al. Diversity and ecology of microbial sulfur metabolism[J]. Nature Reviews Microbiology, 2025, 23(2): 122−140. doi: 10.1038/s41579-024-01104-3
|
| [74] |
Lennartz S T, Von Hobe M, Booge D, et al. The influence of dissolved organic matter on the marine production of carbonyl sulfide (OCS) and carbon disulfide (CS2) in the Peruvian upwelling[J]. Ocean Science, 2019, 15(4): 1071−1090. doi: 10.5194/os-15-1071-2019
|
| [75] |
Fernandes S, Mazumdar A, Bhattacharya S, et al. Enhanced carbon-sulfur cycling in the sediments of Arabian Sea oxygen minimum zone center[J]. Scientific Reports, 2018, 8(1): 8665. doi: 10.1038/s41598-018-27002-2
|
| [76] |
Vidhya V, Jyothibabu R, Alok K T, et al. Ecophysiological status of copepods in the oxygen minimum zone of Eastern Arabian Sea[J]. Marine Pollution Bulletin, 2025, 211: 117370. doi: 10.1016/j.marpolbul.2024.117370
|
| [77] |
Färber Lorda J, Färber Data B. Autumn vertical distribution of zooplankton in the oxygen minimum zone of the Eastern Tropical North Pacific[J]. Marine Environmental Research, 2023, 190: 106116. doi: 10.1016/j.marenvres.2023.106116
|
| [78] |
Stramma L, Schmidtko S, Levin L A, et al. Ocean oxygen minima expansions and their biological impacts[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2010, 57(4): 587−595. doi: 10.1016/j.dsr.2010.01.005
|
| [79] |
Wishner K F, Seibel B A, Roman C, et al. Ocean deoxygenation and zooplankton: very small oxygen differences matter[J]. Science Advances, 2018, 4(12): eaau5180. doi: 10.1126/sciadv.aau5180
|
| [80] |
Stewart J S, Field J C, Markaida U, et al. Behavioral ecology of jumbo squid (Dosidicus gigas) in relation to oxygen minimum zones[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2013, 95: 197−208. doi: 10.1016/j.dsr2.2012.06.005
|
| [81] |
Humphries N E, Fuller D W, Schaefer K M, et al. Highly active fish in low oxygen environments: vertical movements and behavioural responses of bigeye and yellowfin tunas to oxygen minimum zones in the eastern Pacific Ocean[J]. Marine Biology, 2024, 171(2): 55. doi: 10.1007/s00227-023-04366-2
|
| [82] |
Vedor M, Queiroz N, Mucientes G, et al. Climate-driven deoxygenation elevates fishing vulnerability for the ocean's widest ranging shark[J]. eLife, 2021, 10: e62508. doi: 10.7554/eLife.62508
|
| [83] |
Sautya S, Gaikwad S, Khokher S, et al. Distribution pattern of the benthic meiofaunal community along the depth gradient of the Western Indian continental margin, including the OMZ and abyssal plain[J]. Frontiers in Marine Science, 2021, 8: 671444. doi: 10.3389/fmars.2021.671444
|
| [84] |
Fajardo M, Andrade D, Bonicelli J, et al. Macrobenthic communities in a shallow normoxia to hypoxia gradient in the Humboldt upwelling ecosystem[J]. PLoS One, 2018, 13(7): e0200349. doi: 10.1371/journal.pone.0200349
|
| [85] |
Krug A S, Zettler M L. Macrozoobenthic communities in the upwelling area off Chile (36°S) with special consideration of the oxygen minimum zone[J]. Diversity, 2025, 17(4): 278. doi: 10.3390/d17040278
|
| [86] |
Sato K N, Andersson A J, Day J M D, et al. Response of sea urchin fitness traits to environmental gradients across the Southern California oxygen minimum zone[J]. Frontiers in Marine Science, 2018, 5: 258. doi: 10.3389/fmars.2018.00258
|
| [87] |
Canfield D E, Kraft B. The ‘oxygen’ in oxygen minimum zones[J]. Environmental Microbiology, 2022, 24(11): 5332−5344. doi: 10.1111/1462-2920.16192
|
| [88] |
Callbeck C M, Lavik G, Ferdelman T G, et al. Oxygen minimum zone cryptic sulfur cycling sustained by offshore transport of key sulfur oxidizing bacteria[J]. Nature Communications, 2018, 9(1): 1729. doi: 10.1038/s41467-018-04041-x
|
| [89] |
Ito T, Garcia H E, Wang Zhankun, et al. Underestimation of multi-decadal global O2 loss due to an optimal interpolation method[J]. Biogeosciences, 2024, 21(3): 747−759. doi: 10.5194/bg-21-747-2024
|
| [90] |
Weiss R F. The solubility of nitrogen, oxygen and argon in water and seawater[J]. Deep Sea Research and Oceanographic Abstracts, 1970, 17(4): 721−735. doi: 10.1016/0011-7471(70)90037-9
|
| [91] |
Huang Peng, Cai Mingang, Chen Fajin, et al. Roles of temperature and ventilation in oxygen consumption: a chemical kinetics view from the van’t Hoff-based formulation[J]. Marine Environmental Research, 2024, 193: 106278. doi: 10.1016/j.marenvres.2023.106278
|
| [92] |
Filonchyk M, Peterson M P, Zhang Lifeng, et al. Greenhouse gases emissions and global climate change: examining the influence of CO2, CH4, and N2O[J]. Science of the Total Environment, 2024, 935: 173359. doi: 10.1016/j.scitotenv.2024.173359
|
| [93] |
Frey C, Bange H W, Achterberg E P, et al. Regulation of nitrous oxide production in low-oxygen waters off the coast of Peru[J]. Biogeosciences, 2020, 17(8): 2263−2287. doi: 10.5194/bg-17-2263-2020
|
| [94] |
Beman J M, Vargas S M, Wilson J M, et al. Substantial oxygen consumption by aerobic nitrite oxidation in oceanic oxygen minimum zones[J]. Nature Communications, 2021, 12(1): 7043. doi: 10.1038/s41467-021-27381-7
|
| [95] |
Sudheesh V, Gupta G V M, Naqvi S W A. Massive methane loss during seasonal hypoxia/anoxia in the nearshore waters of southeastern Arabian Sea[J]. Frontiers in Marine Science, 2020, 7: 324. doi: 10.3389/fmars.2020.00324
|
| [96] |
Troncoso M, Garcia G, Verdugo J, et al. Toward high-resolution vertical measurements of dissolved greenhouse gases (nitrous oxide and methane) and nutrients in the eastern South Pacific[J]. Frontiers in Marine Science, 2018, 5: 148. doi: 10.3389/fmars.2018.00148
|
| [97] |
Lincy J, Manohar C S. A comparison of bacterial communities from OMZ sediments in the Arabian Sea and the Bay of Bengal reveals major differences in nitrogen turnover and carbon recycling potential[J]. Marine Biology Research, 2020, 16(8/9): 656−673.
|
| [98] |
Levin L A. Manifestation, drivers, and emergence of open ocean deoxygenation[J]. Annual Review of Marine Science, 2018, 10(1): 229−260. doi: 10.1146/annurev-marine-121916-063359
|