| Citation: | Cui Mengyao,Wei Fen,Yu Kefu. Research progress on sexual reproduction of scleractinian corals[J]. Haiyang Xuebao,2025, 47(11):13–26 doi: 10.12284/hyxb2025134 |
| [1] |
Jones R, Ricardo G F, Negri A P. Effects of sediments on the reproductive cycle of corals[J]. Marine Pollution Bulletin, 2015, 100(1): 13−33. doi: 10.1016/j.marpolbul.2015.08.021
|
| [2] |
Randall C J, Negri A P, Quigley K M, et al. Sexual production of corals for reef restoration in the Anthropocene[J]. Marine Ecology Progress Series, 2020, 635: 203−232. doi: 10.3354/meps13206
|
| [3] |
Richmond, R. H. Reproduction and recruitment in corals[M]//Birkeland, C. Life and Death of Coral Reefs. New York: Springer, 1997: 175–197.
|
| [4] |
Hughes T P, Tanner J E. Recruitment failure, life histories, and long-term decline of caribbean corals[J]. Ecology, 2000, 81(8): 2250−2263. doi: 10.1890/0012-9658(2000)081[2250:RFLHAL]2.0.CO;2
|
| [5] |
Guest J, Heyward A, Omori M, et al. Rearing coral larvae for reef rehabilitation[J]. Reef Rehabilitation Manual, 2010: 73−92.
|
| [6] |
Omori M, Fujiwara S. Manual for Restoration and Remediation of Coral Reefs[M]. Japan: Nature Conservation Bureau and Ministry of the Environment, 2004.
|
| [7] |
Heyward A J, Negri A P. Turbulence, cleavage, and the naked embryo: a case for coral clones[J]. Science, 2012, 335(6072): 1064−1064. doi: 10.1126/science.1216055
|
| [8] |
Humphrey C, Weber M, Lott C, et al. Effects of suspended sediments, dissolved inorganic nutrients and salinity on fertilisation and embryo development in the coral Acropora millepora (Ehrenberg, 1834)[J]. Coral Reefs, 2008, 27(4): 837−850. doi: 10.1007/s00338-008-0408-1
|
| [9] |
Riegl B, Purkis S J, Keck J, et al. Monitored and modeled coral population dynamics and the refuge concept[J]. Marine Pollution Bulletin, 2009, 58(1): 24−38. doi: 10.1016/j.marpolbul.2008.10.019
|
| [10] |
Harrison P L, Wallace C C. Reproduction, dispersal and recruitment of scleractinian corals[M]//Dubinsky Z. Coral Reefs. Netherlands: Elsevier Science Publishers, 1990, 25: 133−207.
|
| [11] |
Byrne M. Global change ecotoxicology: identification of early life history bottlenecks in marine invertebrates, variable species responses and variable experimental approaches[J]. Marine environmental research, 2012, 76: 3−15. doi: 10.1016/j.marenvres.2011.10.004
|
| [12] |
Baird A H, Guest J R, Willis B L. Systematic and biogeographical patterns in the reproductive biology of scleractinian corals[J]. Annual Review of Ecology, Evolution, and Systematics, 2009, 40: 551−571. doi: 10.1146/annurev.ecolsys.110308.120220
|
| [13] |
杨小东. 澄黄滨珊瑚、大管孔珊瑚和丛生盔形珊瑚性腺发育与生长规律的研究[D]. 湛江: 广东海洋大学, 2013.
Yang Xiaodong. Study of gonad development and growths of Porites lutea, Goniopora djiboutiensis and Galaxea fascicularis[D]. Zhanjiang: Guangdong Ocean University, 2013.
|
| [14] |
Loya Y, Sakai K. Bidirectional sex change in mushroom stony corals[J]. Proceedings of the Royal Society B: Biological Sciences, 2008, 275(1649): 2335−2343. doi: 10.1098/rspb.2008.0675
|
| [15] |
Eyal-Shaham L, Eyal G, Ben-Zvi O, et al. A unique reproductive strategy in the mushroom coral Fungia fungites[J]. Coral Reefs, 2020, 39(6): 1793−1804. doi: 10.1007/s00338-020-02004-7
|
| [16] |
Santiago-Valentín J D, Rodríguez-Troncoso A P, Carpizo-Ituarte E, et al. Reproductive pattern of the reef-building coral Pavona gigantea (Scleractinia: agariciidae) off southwestern Mexico[J]. Ciencias Marinas, 2015, 41(3): 233−246. doi: 10.7773/cm.v41i3.2482
|
| [17] |
Glynn P W, Gassman N J, Eakin C M, et al. Reef coral reproduction in the eastern Pacific: Costa Rica, Panama, and Galapagos Islands (Ecuador)[J]. Marine Biology, 1991, 109(3): 355−368. doi: 10.1007/BF01313501
|
| [18] |
Cabral-Tena R A, Tortolero-Langarica J J A, Carricart-Ganivet J P, et al. Sex-associated differences in sclerochronology and sensitivity to thermal stress in Caribbean and eastern Pacific reef-building corals[J]. Marine Ecology Progress Series, 2024, 743: 167−183. doi: 10.3354/meps14661
|
| [19] |
Cruz-Ortega I, Cabral-Tena R A, Carpizo-Ituarte E, et al. Sensitivity of calcification to thermal history differs between sexes in the gonochoric reef-building corals Dichocoenia stokesi and Dendrogyra cylindrus[J]. Marine Biology, 2020, 167(7): 101. doi: 10.1007/s00227-020-03713-x
|
| [20] |
Shikina S, Chang C F. Sexual reproduction in stony corals and insight into the evolution of oogenesis in Cnidaria[M]//Goffredo S, Dubinsky Z. The Cnidaria, Past, Present and Future: The world of Medusa and Her Sisters. Cham: Springer, 2016: 249−268.
|
| [21] |
Fadlallah Y H. Sexual reproduction, development and larval biology in scleractinian corals[J]. Coral Reefs, 1983, 2(3): 129−150. doi: 10.1007/BF00336720
|
| [22] |
Harrison P L. Sexual reproduction of scleractinian corals[M]//Dubinsky Z, Stambler N. Coral Reefs: An Ecosystem in Transition. Dordrecht: Springer, 2011: 59-85.
|
| [23] |
Tanner J E. Seasonality and lunar periodicity in the reproduction of Pocilloporid corals[J]. Coral Reefs, 1996, 15(1): 59−66. doi: 10.1007/BF01626077
|
| [24] |
韦芬, 崔梦瑶, 余克服, 等. 涠洲岛海域美丽鹿角珊瑚和秘密角蜂巢珊瑚的性腺发育研究[J]. 海洋学报, 2023, 45(12): 92−100.
Wei Fen, Cui Mengyao, Yu Kefu, et al. Gonadal development of Acropora formosa and Favites abdita in Weizhou Island[J]. Haiyang Xuebao, 2023, 45(12): 92−100.
|
| [25] |
Gomez E J, Jamodiong E A, Maboloc E A, et al. Gametogenesis and reproductive pattern of the reef-building coral Acropora millepora in northwestern Philippines[J]. Invertebrate Reproduction & Development, 2018, 62(4): 202−208.
|
| [26] |
Fan T Y, Dai C F. Reproductive plasticity in the reef coral Echinopora lamellosa[J]. Marine Ecology Progress Series, 1999, 190: 297−301. doi: 10.3354/meps190297
|
| [27] |
Vargas-Ángel B, Colley S B, Hoke S M, et al. The reproductive seasonality and gametogenic cycle of Acropora cervicornis off Broward County, Florida, USA[J]. Coral Reefs, 2006, 25(1): 110−122. doi: 10.1007/s00338-005-0070-9
|
| [28] |
Shikina S, Chung Y J, Wang H M, et al. Localization of early germ cells in a stony coral, Euphyllia ancora: potential implications for a germline stem cell system in coral gametogenesis[J]. Coral Reefs, 2015, 34(2): 639−653. doi: 10.1007/s00338-015-1270-6
|
| [29] |
Shikina S, Chiu Y L, Chen C J, et al. Immunodetection of acetylated alpha‐tubulin in stony corals: evidence for the existence of flagella in coral male germ cells[J]. Molecular Reproduction and Development, 2017, 84(12): 1285−1295. doi: 10.1002/mrd.22927
|
| [30] |
Chiu Y L, Shikina S, Yoshioka Y, et al. De novo transcriptome assembly from the gonads of a scleractinian coral, Euphyllia ancora: molecular mechanisms underlying scleractinian gametogenesis[J]. BMC Genomics, 2020, 21(1): 732. doi: 10.1186/s12864-020-07113-9
|
| [31] |
Baird A H, Guest J R. Spawning synchrony in scleractinian corals: comment on Mangubhai & Harrison (2008)[J]. Marine Ecology Progress Series, 2009, 374: 301−304. doi: 10.3354/meps07838
|
| [32] |
Shlesinger Y, Goulet T L, Loya Y. Reproductive patterns of scleractinian corals in the northern Red Sea[J]. Marine Biology, 1998, 132(4): 691−701. doi: 10.1007/s002270050433
|
| [33] |
Okubo N, Motokawa T. Embryogenesis in the reef-building coral Acropora spp[J]. Zoological Science, 2007, 24(12): 1169−1177. doi: 10.2108/zsj.24.1169
|
| [34] |
Chui A P Y, Wong M C, Liu S H, et al. Gametogenesis, embryogenesis, and fertilization ecology of Platygyra acuta in marginal nonreefal coral communities in Hong Kong[J]. Journal of Marine Biology, 2014, 2014: 953587.
|
| [35] |
Guest J R, Baird A H, Goh B P L, et al. Seasonal reproduction in equatorial reef corals[J]. Invertebrate Reproduction & Development, 2005, 48(1/3): 207−218.
|
| [36] |
Baird A H, Guest J R, Edwards A J, et al. An indo-pacific coral spawning database[J]. Scientific Data, 2021, 8(1): 35. doi: 10.1038/s41597-020-00793-8
|
| [37] |
Hoadley K D, Vize P D, Pyott S J. Current understanding of the circadian clock within Cnidaria[M]//Goffredo S, Dubinsky Z. The Cnidaria, Past, Present and Future: The World of Medusa and Her Sisters. Cham: Springer, 2016: 511−520.
|
| [38] |
Babcock R C, Bull G D, Harrison P L, et al. Synchronous spawnings of 105 scleractinian coral species on the Great Barrier Reef[J]. Marine Biology, 1986, 90(3): 379−394. doi: 10.1007/BF00428562
|
| [39] |
Shlesinger T, Loya Y. Breakdown in spawning synchrony: a silent threat to coral persistence[J]. Science, 2019, 365(6457): 1002−1007. doi: 10.1126/science.aax0110
|
| [40] |
Keith S A, Maynard J A, Edwards A J, et al. Coral mass spawning predicted by rapid seasonal rise in ocean temperature[J]. Proceedings of the Royal Society B: Biological Sciences, 2016, 283(1830): 20160011. doi: 10.1098/rspb.2016.0011
|
| [41] |
黄洁英. 三亚鹿回头海域造礁石珊瑚的有性繁殖生物学研究[D]. 北京: 中国科学院, 2011.
Huang Jieying. The sexual reproductive biology of hermatypic corals in Luhuitou, Sanya, China[D]. Beijing: University of Chinese Academy of Sciences, 2011.
|
| [42] |
Lin C H, Nozawa Y. The influence of seawater temperature on the timing of coral spawning[J]. Coral Reefs, 2023, 42(2): 417−426. doi: 10.1007/s00338-023-02349-9
|
| [43] |
Fogarty N D, Marhaver K L. Coral spawning, unsynchronized[J]. Science, 2019, 365(6457): 987−988. doi: 10.1126/science.aay7457
|
| [44] |
Lin C H, Nozawa Y. Variability of spawning time (lunar day) in Acropora versus merulinid corals: a 7-yr record of in situ coral spawning in Taiwan[J]. Coral Reefs, 2017, 36(4): 1269−1278. doi: 10.1007/s00338-017-1622-5
|
| [45] |
Levy O, Appelbaum L, Leggat W, et al. Light-responsive cryptochromes from a simple multicellular animal, the coral Acropora millepora[J]. Science, 2007, 318(5849): 467−470. doi: 10.1126/science.1145432
|
| [46] |
Shoguchi E, Tanaka M, Shinzato C, et al. A genome-wide survey of photoreceptor and circadian genes in the coral, Acropora digitifera[J]. Gene, 2013, 515(2): 426−431. doi: 10.1016/j.gene.2012.12.038
|
| [47] |
Lin C H, Takahashi S, Mulla A J, et al. Moonrise timing is key for synchronized spawning in coral Dipsastraea speciosa[J]. Proceedings of the National Academy of Sciences, 2021, 118(34): e2101985118. doi: 10.1073/pnas.2101985118
|
| [48] |
Kaniewska P, Alon S, Karako-Lampert S, et al. Signaling cascades and the importance of moonlight in coral broadcast mass spawning[J]. eLife, 2015, 4: e09991. doi: 10.7554/eLife.09991
|
| [49] |
Wolstenholme J, Nozawa Y, Byrne M, et al. Timing of mass spawning in corals: potential influence of the coincidence of lunar factors and associated changes in atmospheric pressure from northern and southern hemisphere case studies[J]. Invertebrate Reproduction & Development, 2018, 62(2): 98−108.
|
| [50] |
Levitan D R, Fogarty N D, Jara J, et al. Genetic, spatial, and temporal components of precise spawning synchrony in reef building corals of the Montastraea annularis species complex[J]. Evolution, 2011, 65(5): 1254−1270. doi: 10.1111/j.1558-5646.2011.01235.x
|
| [51] |
Sakai Y, Hatta M, Furukawa S, et al. Environmental factors explain spawning day deviation from full moon in the scleractinian coral Acropora[J]. Biology Letters, 2020, 16(1): 20190760. doi: 10.1098/rsbl.2019.0760
|
| [52] |
Harrison P L. Sexual reproduction of reef corals and application to coral restoration[M]//Wolanski E, Kingsford M J. Oceanographic Processes of Coral Reefs. 2nd ed. Boca Raton: CRC Press, 2024: 419−437.
|
| [53] |
Gouezo M, Doropoulos C, Fabricius K, et al. Multispecific coral spawning events and extended breeding periods on an equatorial reef[J]. Coral Reefs, 2020, 39(4): 1107−1123. doi: 10.1007/s00338-020-01941-7
|
| [54] |
Lobov A A, Maltseva A L, Mikhailova N A, et al. The molecular mechanisms of gametic incompatibility in invertebrates[J]. Acta Naturae, 2019, 11(3): 4−15. doi: 10.32607/20758251-2019-11-3-4-15
|
| [55] |
Buccheri E, Ricardo G F, Babcock R C, et al. Fertilisation kinetics among common Indo-Pacific broadcast spawning corals with distinct and shared functional traits[J]. Coral Reefs, 2023, 42(6): 1351−1363. doi: 10.1007/s00338-023-02431-2
|
| [56] |
Mumby P J, Sartori G, Buccheri E, et al. Allee effects limit coral fertilization success[J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(52): e2418314121.
|
| [57] |
Nozawa Y, Isomura N, Fukami H. Influence of sperm dilution and gamete contact time on the fertilization rate of scleractinian corals[J]. Coral Reefs, 2015, 34(4): 1199−1206. doi: 10.1007/s00338-015-1338-3
|
| [58] |
Martignago D C, Godoy L, Amaral A P, et al. Establishment of oxidative stress biomarkers in oocytes from healthy and bleached scleractinian corals[J]. Journal of Experimental Marine Biology and Ecology, 2024, 570: 151963. doi: 10.1016/j.jembe.2023.151963
|
| [59] |
Paxton C W, Baria M V B, Weis V M, et al. Effect of elevated temperature on fecundity and reproductive timing in the coral Acropora digitifera[J]. Zygote, 2016, 24(4): 511−516. doi: 10.1017/S0967199415000477
|
| [60] |
Briggs N D, Page C A, Giuliano C, et al. Dissecting coral recovery: bleaching reduces reproductive output in Acropora millepora[J]. Coral Reefs, 2024, 43(3): 557−569. doi: 10.1007/s00338-024-02483-y
|
| [61] |
Albright R, Mason B. Projected near-future levels of temperature and pCO2 reduce coral fertilization success[J]. PLoS One, 2013, 8(2): e56468. doi: 10.1371/journal.pone.0056468
|
| [62] |
Puisay A, Hédouin L, Pilon R, et al. How thermal priming of coral gametes shapes fertilization success[J]. Journal of Experimental Marine Biology and Ecology, 2023, 566: 151920. doi: 10.1016/j.jembe.2023.151920
|
| [63] |
Hagedorn M, Page C A, O’Neil K L, et al. Assisted gene flow using cryopreserved sperm in critically endangered coral[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(38): e2110559118.
|
| [64] |
Hagedorn M, Carter V L, Henley E M, et al. Producing coral offspring with cryopreserved sperm: a tool for coral reef restoration[J]. Scientific Reports, 2017, 7(1): 14432. doi: 10.1038/s41598-017-14644-x
|
| [65] |
Daly J, Hobbs R J, Zuchowicz N, et al. Cryopreservation can assist gene flow on the great barrier reef[J]. Coral Reefs, 2022, 41(2): 455−462. doi: 10.1007/s00338-021-02202-x
|
| [66] |
Hobbs R J, O'brien J K, Bay L K, et al. A decade of coral biobanking science in Australia-transitioning into applied reef restoration[J]. Frontiers in Marine Science, 2022, 9: 960470. doi: 10.3389/fmars.2022.960470
|
| [67] |
Bouwmeester J, Daly J, Zuchowicz N, et al. Cryopreservation to conserve genetic diversity of reef-building corals[M]//Van Oppen M J H, Lastra M A. Coral Reef Conservation and Restoration in the Omics Age. Cham: Springer, 2022: 225−240.
|
| [68] |
Daly J, Hobbs R, Zuchowicz N, et al. A semi-automated workflow for the cryopreservation of coral sperm to support biobanking and aquaculture[J]. Journal of Visualized Experiments, 2024(208): e66233.
|
| [69] |
韦芬, 黄雯, 余克服, 等. 广西涠洲岛黄癣蜂巢珊瑚、肉质扁脑珊瑚的胚胎和幼虫的早期发育[J]. 海洋学报, 2020, 42(4): 87−95.
Wei Fen, Huang Wen, Yu Kefu, et al. Embryonic and larval early development of Favia favus and Platygyra carnosus in the Weizhou Island, Guangxi[J]. Haiyang Xuebao, 2020, 42(4): 87−95.
|
| [70] |
Okubo N, Mezaki T, Nozawa Y, et al. Comparative embryology of eleven species of stony corals (Scleractinia)[J]. PLoS One, 2013, 8(12): e84115. doi: 10.1371/journal.pone.0084115
|
| [71] |
Permata W D, Kinzie Iii R A, Hidaka M. Histological studies on the origin of planulae of the coral Pocillopora damicornis[J]. Marine Ecology Progress Series, 2000, 200: 191−200. doi: 10.3354/meps200191
|
| [72] |
Babcock R C, Heyward A J. Larval development of certain gamete-spawning scleractinian corals[J]. Coral reefs, 1986, 5(3): 111−116. doi: 10.1007/BF00298178
|
| [73] |
Hirose M, Hidaka M. Early development of zooxanthella-containing eggs of the corals Porites cylindrica and Montipora digitata: the endodermal localization of zooxanthellae[J]. Zoological Science, 2006, 23(10): 873−881. doi: 10.2108/zsj.23.873
|
| [74] |
肖宝华, 廖宝林, 杨小东, 等. 肉质扁脑珊瑚的有性繁殖及早期发育[J]. 热带海洋学报, 2017, 36(1): 65−71.
Xiao Baohua, Liao Baolin, Yang Xiaodong, et al. Sexual reproduction and early development of Platygyra carnosus[J]. Journal of Tropical Oceanography, 2017, 36(1): 65−71.
|
| [75] |
Technau U. Gastrulation and germ layer formation in the sea anemone Nematostella vectensis and other cnidarians[J]. Mechanisms of Development, 2020, 163: 103628. doi: 10.1016/j.mod.2020.103628
|
| [76] |
Okubo N, Hayward D C, Forêt S, et al. A comparative view of early development in the corals Favia lizardensis, Ctenactis echinata, and Acropora millepora-morphology, transcriptome, and developmental gene expression[J]. BMC Evolutionary Biology, 2016, 16(1): 48. doi: 10.1186/s12862-016-0615-2
|
| [77] |
Marlow H Q, Martindale M Q. Embryonic development in two species of scleractinian coral embryos: Symbiodinium localization and mode of gastrulation[J]. Evolution & Development, 2007, 9(4): 355−367.
|
| [78] |
Keshavmurthy S, Fontana S, Mezaki T, et al. Doors are closing on early development in corals facing climate change[J]. Scientific Reports, 2014, 4(1): 5633. doi: 10.1038/srep05633
|
| [79] |
Humanes A, Noonan S H C, Willis B L, et al. Cumulative effects of nutrient enrichment and elevated temperature compromise the early life history stages of the coral Acropora tenuis[J]. PLoS One, 2016, 11(8): e0161616. doi: 10.1371/journal.pone.0161616
|
| [80] |
Puisay A, Pilon R, Goiran C, et al. Thermal resistances and acclimation potential during coral larval ontogeny in Acropora pulchra[J]. Marine Environmental Research, 2018, 135: 1−10. doi: 10.1016/j.marenvres.2018.01.005
|
| [81] |
Petersen L E, Kellermann M Y, Schupp P J. Secondary metabolites of marine microbes: From natural products chemistry to chemical ecology[M]//Jungblut S, Liebich V, Bode-Dalby M. YOUMARES 9 - The Oceans: Our Research, Our Future. Cham: Springer, 2020: 159−180.
|
| [82] |
Randall C J, Giuliano C, Stephenson B, et al. Larval precompetency and settlement behaviour in 25 Indo-Pacific coral species[J]. Communications Biology, 2024, 7(1): 142. doi: 10.1038/s42003-024-05824-3
|
| [83] |
Mass T, Putnam H M, Drake J L, et al. Temporal and spatial expression patterns of biomineralization proteins during early development in the stony coral Pocillopora damicornis[J]. Proceedings of the Royal Society B: Biological Sciences, 2016, 283(1829): 20160322. doi: 10.1098/rspb.2016.0322
|
| [84] |
Wei Fen, Cui Mengyao, Huang Wen, et al. Ex situ reproduction and recruitment of scleractinian coral Galaxea fascicularis[J]. Marine Biology, 2023, 170(3): 30. doi: 10.1007/s00227-023-04175-7
|
| [85] |
Connolly S R, Baird A H. Estimating dispersal potential for marine larvae: dynamic models applied to scleractinian corals[J]. Ecology, 2010, 91(12): 3572−3583. doi: 10.1890/10-0143.1
|
| [86] |
Gleason D F, Hofmann D K. Coral larvae: from gametes to recruits[J]. Journal of Experimental Marine Biology and Ecology, 2011, 408(1/2): 42−57.
|
| [87] |
Pysanczyn J W, Williams E A, Brodrick E, et al. The role of acoustics within the sensory landscape of coral larval settlement[J]. Frontiers in Marine Science, 2023, 10: 1111599. doi: 10.3389/fmars.2023.1111599
|
| [88] |
Whitman T N, Negri A P, Bourne D G, et al. Settlement of larvae from four families of corals in response to a crustose coralline alga and its biochemical morphogens[J]. Scientific Reports, 2020, 10(1): 16397. doi: 10.1038/s41598-020-73103-2
|
| [89] |
Abdul Wahab M A, Ferguson S, Snekkevik V K, et al. Hierarchical settlement behaviours of coral larvae to common coralline algae[J]. Scientific Reports, 2023, 13(1): 5795. doi: 10.1038/s41598-023-32676-4
|
| [90] |
Tebben J, Motti C A, Siboni N, et al. Chemical mediation of coral larval settlement by crustose coralline algae[J]. Scientific Reports, 2015, 5(1): 10803. doi: 10.1038/srep10803
|
| [91] |
Kitamura M, Schupp P J, Nakano Y, et al. Luminaolide, a novel metamorphosis-enhancing macrodiolide for scleractinian coral larvae from crustose coralline algae[J]. Tetrahedron Letters, 2009, 50(47): 6606−6609. doi: 10.1016/j.tetlet.2009.09.065
|
| [92] |
Turnlund A C. Interactions between coral larval settlement, marine biofilms and crustose coralline algae microbiomes[D]. Brisbane: The University of Queensland, 2024.
|
| [93] |
Bourne D G, Sato Y, Smith H A. Microbes guide corals looking to find a home[J]. Trends in Microbiology, 2024, 32(2): 120−121. doi: 10.1016/j.tim.2023.11.017
|
| [94] |
Turnlund A C, Vanwonterghem I, Botté E S, et al. Linking differences in microbial network structure with changes in coral larval settlement[J]. ISME Communications, 2023, 3(1): 114. doi: 10.1038/s43705-023-00320-x
|
| [95] |
Kegler P, Kegler H F, Gärdes A, et al. Bacterial biofilm communities and coral larvae settlement at different levels of anthropogenic impact in the Spermonde Archipelago, Indonesia[J]. Frontiers in Marine Science, 2017, 4: 270. doi: 10.3389/fmars.2017.00270
|
| [96] |
Tebben J, Tapiolas D M, Motti C A, et al. Induction of larval metamorphosis of the coral Acropora millepora by tetrabromopyrrole isolated from a Pseudoalteromonas bacterium[J]. PLoS One, 2011, 6(4): e19082. doi: 10.1371/journal.pone.0019082
|
| [97] |
Alker A T, Farrell M V, Demko A M, et al. Linking bacterial tetrabromopyrrole biosynthesis to coral metamorphosis[J]. ISME Communications, 2023, 3(1): 98. doi: 10.1038/s43705-023-00309-6
|
| [98] |
Sneed J M, Sharp K H, Ritchie K B, et al. The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals[J]. Proceedings of the Royal Society B: Biological Sciences, 2014, 281(1786): 20133086. doi: 10.1098/rspb.2013.3086
|
| [99] |
Petersen L E, Kellermann M Y, Nietzer S, et al. Photosensitivity of the bacterial pigment cycloprodigiosin enables settlement in coral larvae—light as an understudied environmental factor[J]. Frontiers in Marine Science, 2021, 8: 749070. doi: 10.3389/fmars.2021.749070
|
| [100] |
Petersen L E, Kellermann M Y, Fiegel L J, et al. Photodegradation of a bacterial pigment and resulting hydrogen peroxide release enable coral settlement[J]. Scientific Reports, 2023, 13(1): 3562. doi: 10.1038/s41598-023-30470-w
|
| [101] |
Erwin P M, Szmant A M. Settlement induction of Acropora palmata planulae by a GLW-amide neuropeptide[J]. Coral Reefs, 2010, 29(4): 929−939. doi: 10.1007/s00338-010-0634-1
|
| [102] |
Moeller M, Nietzer S, Schupp P J. Neuroactive compounds induce larval settlement in the scleractinian coral Leptastrea purpurea[J]. Scientific Reports, 2019, 9(1): 2291. doi: 10.1038/s41598-019-38794-2
|
| [103] |
Yang Qingsong, Zhang Wenqian, Zhang Ying, et al. Promoting larval settlement of coral Pocillopora damicornis by calcium[J]. Coral Reefs, 2022, 41(1): 223−235. doi: 10.1007/s00338-021-02216-5
|
| [104] |
Strader M E, Davies S W, Matz M V. Differential responses of coral larvae to the colour of ambient light guide them to suitable settlement microhabitat[J]. Royal Society Open Science, 2015, 2(10): 150358. doi: 10.1098/rsos.150358
|
| [105] |
Mason B, Beard M, Miller M W. Coral larvae settle at a higher frequency on red surfaces[J]. Coral Reefs, 2011, 30(3): 667−676. doi: 10.1007/s00338-011-0739-1
|
| [106] |
Levenstein M A, Marhaver K L, Quinlan Z A, et al. Engineered substrates reveal species-specific inorganic cues for coral larval settlement[J]. ACS Sustainable Chem. Eng., 2022, 10: 3960−3971.
|
| [107] |
Patterson J T, Flint M, Than J, et al. Evaluation of substrate properties for settlement of Caribbean staghorn coral Acropora cervicornis larvae in a land‐based system[J]. North American Journal of Aquaculture, 2016, 78(4): 337−345. doi: 10.1080/15222055.2016.1185068
|
| [108] |
Wilson J, Harrison P. Post-settlement mortality and growth of newly settled reef corals in a subtropical environment[J]. Coral Reefs, 2005, 24(3): 418−421. doi: 10.1007/s00338-005-0033-1
|
| [109] |
Doropoulos C, Roff G, Bozec Y M, et al. Characterizing the ecological trade‐offs throughout the early ontogeny of coral recruitment[J]. Ecological Monographs, 2016, 86(1): 20−44. doi: 10.1890/15-0668.1
|
| [110] |
Wolanski E, Kingsford M J. Oceanographic Processes of Coral Reefs: Physical and Biological Links in the Great Barrier Reef[M]. 2nd ed. Boca Raton: CRC Press, 2024.
|
| [111] |
Babcock R, Mundy C. Coral recruitment: consequences of settlement choice for early growth and survivorship in two scleractinians[J]. Journal of Experimental Marine Biology and Ecology, 1996, 206(1/2): 179−201.
|
| [112] |
Doropoulos C, Ward S, Marshell A, et al. Interactions among chronic and acute impacts on coral recruits: the importance of size‐escape thresholds[J]. Ecology, 2012, 93(10): 2131−2138. doi: 10.1890/12-0495.1
|
| [113] |
Penin L, Michonneau F, Baird A H, et al. Early post-settlement mortality and the structure of coral assemblages[J]. Marine Ecology Progress Series, 2010, 408: 55−64. doi: 10.3354/meps08554
|
| [114] |
Nozawa Y. Micro-crevice structure enhances coral spat survivorship[J]. Journal of Experimental Marine Biology and Ecology, 2008, 367(2): 127−130. doi: 10.1016/j.jembe.2008.09.004
|
| [115] |
Chamberland V F, Petersen D, Guest J R, et al. New seeding approach reduces costs and time to outplant sexually propagated corals for reef restoration[J]. Scientific Reports, 2017, 7(1): 18076. doi: 10.1038/s41598-017-17555-z
|
| [116] |
Tebben J, Guest J R, Sin T M, et al. Corals like it waxed: paraffin-based antifouling technology enhances coral spat survival[J]. PLoS One, 2014, 9(1): e87545. doi: 10.1371/journal.pone.0087545
|
| [117] |
Davies S W, Matz M V, Vize P D. Ecological complexity of coral recruitment processes: effects of invertebrate herbivores on coral recruitment and growth depends upon substratum properties and coral species[J]. PLoS One, 2013, 8(9): e72830. doi: 10.1371/journal.pone.0072830
|
| [118] |
Toh T C, Ng C S L, Guest J, et al. Grazers improve health of coral juveniles in ex situ mariculture[J]. Aquaculture, 2013, 414−415: 288−293.
|
| [119] |
Craggs J, Guest J, Bulling M, et al. Ex situ co culturing of the sea urchin, Mespilia globulus and the coral Acropora millepora enhances early post-settlement survivorship[J]. Scientific Reports, 2019, 9(1): 12984. doi: 10.1038/s41598-019-49447-9
|
| [120] |
Nozawa Y, Harrison P L. Effects of elevated temperature on larval settlement and post-settlement survival in scleractinian corals, Acropora solitaryensis and Favites chinensis[J]. Marine Biology, 2007, 152(5): 1181−1185. doi: 10.1007/s00227-007-0765-2
|
| [121] |
Ross C, Ritson-Williams R, Olsen K, et al. Short-term and latent post-settlement effects associated with elevated temperature and oxidative stress on larvae from the coral Porites astreoides[J]. Coral Reefs, 2013, 32(1): 71−79. doi: 10.1007/s00338-012-0956-2
|
| [122] |
Nakamura M, Ohki S, Suzuki A, et al. Coral larvae under ocean acidification: survival, metabolism, and metamorphosis[J]. PLoS One, 2011, 6(1): e14521. doi: 10.1371/journal.pone.0014521
|
| [123] |
Cohen A L, McCorkle D C, de Putron S, et al. Morphological and compositional changes in the skeletons of new coral recruits reared in acidified seawater: insights into the biomineralization response to ocean acidification[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(7): 2009GC002411. doi: 10.1029/2009GC002411
|
| [124] |
Chan Y L, Stock J H, Watson M W. A dynamic factor model framework for forecast combination[J]. Spanish Economic Review, 1999, 1(2): 91−121. doi: 10.1007/s101080050005
|
| [125] |
Quigley K M, Marzonie M, Ramsby B, et al. Variability in fitness trade-offs amongst coral juveniles with mixed genetic backgrounds held in the wild[J]. Frontiers in Marine Science, 2021, 8: 636177. doi: 10.3389/fmars.2021.636177
|
| [126] |
Torda G, Lundgren P, Willis B L, et al. Revisiting the connectivity puzzle of the common coral Pocillopora damicornis[J]. Molecular Ecology, 2013, 22(23): 5805−5820. doi: 10.1111/mec.12540
|
| [127] |
Hoegh-Guldberg O, Hughes L, McIntyre S, et al. Assisted colonization and rapid climate change[J]. Science, 2008, 321(5887): 345−346. doi: 10.1126/science.1157897
|
| [128] |
Chan W Y, Chung J, Peplow L M, et al. Maternal effects in gene expression of interspecific coral hybrids[J]. Molecular Ecology, 2021, 30(2): 517−527. doi: 10.1111/mec.15727
|
| [129] |
Quigley K M, Randall C J, Van Oppen M J H, et al. Assessing the role of historical temperature regime and algal symbionts on the heat tolerance of coral juveniles[J]. Biology Open, 2020, 9(1): bio047316.
|
| [130] |
Kirk N L, Howells E J, Abrego D, et al. Genomic and transcriptomic signals of thermal tolerance in heat‐tolerant corals (Platygyra daedalea) of the Arabian/Persian Gulf[J]. Molecular Ecology, 2018, 27(24): 5180−5194. doi: 10.1111/mec.14934
|
| [131] |
Fuller Z L, Mocellin V J L, Morris L A, et al. Population genetics of the coral Acropora millepora: toward genomic prediction of bleaching[J]. Science, 2020, 369(6501): eaba4674. doi: 10.1126/science.aba4674
|
| [132] |
Cleves P A, Tinoco A I, Bradford J, et al. Reduced thermal tolerance in a coral carrying CRISPR-induced mutations in the gene for a heat-shock transcription factor[J]. Proceedings of the National Academy of Sciences, 2020, 117(46): 28899−28905.
|
| [133] |
Rinkevich B, Shaish L, Douek J, et al. Venturing in coral larval chimerism: a compact functional domain with fostered genotypic diversity[J]. Scientific Reports, 2016, 6(1): 19493. doi: 10.1038/srep19493
|
| [134] |
Huffmyer A S, Drury C, Majerová E, et al. Tissue fusion and enhanced genotypic diversity support the survival of Pocillopora acuta coral recruits under thermal stress[J]. Coral Reefs, 2021, 40(2): 447−458. doi: 10.1007/s00338-021-02074-1
|
| [135] |
Jiang Lei, Zhang Yuyang, Liu Chengyue, et al. Gregarious larval settlement mediates the responses of new recruits of the reef coral Acropora austera to ocean warming and acidification[J]. Frontiers in Marine Science, 2022, 9: 964803. doi: 10.3389/fmars.2022.964803
|
| [136] |
Edmunds P J. Coral recruitment: patterns and processes determining the dynamics of coral populations[J]. Biological Reviews, 2023, 98(6): 1862−1886. doi: 10.1111/brv.12987
|
| [137] |
Bockel T, Rinkevich B. Rapid recruitment of symbiotic algae into developing scleractinian coral tissues[J]. Journal of Marine Science and Engineering, 2019, 7(9): 306. doi: 10.3390/jmse7090306
|
| [138] |
Kenkel C D, Bay L K. Exploring mechanisms that affect coral cooperation: symbiont transmission mode, cell density and community composition[J]. PeerJ, 2018, 6: e6047. doi: 10.7717/peerj.6047
|
| [139] |
McIlroy S E, Coffroth M A. Coral ontogeny affects early symbiont acquisition in laboratory-reared recruits[J]. Coral Reefs, 2017, 36(3): 927−932. doi: 10.1007/s00338-017-1584-7
|
| [140] |
Quigley K M, Alvarez Roa C, Beltran V H, et al. Experimental evolution of the coral algal endosymbiont, Cladocopium goreaui: lessons learnt across a decade of stress experiments to enhance coral heat tolerance[J]. Restoration Ecology, 2021, 29(3): e13342. doi: 10.1111/rec.13342
|
| [141] |
Pochon X, Gates R D. A new Symbiodinium clade (Dinophyceae) from Soritid foraminifera in Hawai’i[J]. Molecular Phylogenetics and Evolution, 2010, 56(1): 492−497. doi: 10.1016/j.ympev.2010.03.040
|
| [142] |
Adams L M, Cumbo V R, Takabayashi M. Exposure to sediment enhances primary acquisition of Symbiodinium by asymbiotic coral larvae[J]. Marine Ecology Progress Series, 2009, 377: 149−156. doi: 10.3354/meps07834
|
| [143] |
Cumbo V R, Baird A H, Van Oppen M J H. The promiscuous larvae: flexibility in the establishment of symbiosis in corals[J]. Coral Reefs, 2013, 32(1): 111−120. doi: 10.1007/s00338-012-0951-7
|
| [144] |
Schwarz J A, Krupp D A, Weis V M. Late larval development and onset of symbiosis in the scleractinian coral Fungia scutaria[J]. The Biological Bulletin, 1999, 196(1): 70−79. doi: 10.2307/1543169
|
| [145] |
Williams R B, Cornelius P F S, Hughes R G, et al. Coelenterate biology: recent research on cnidaria and ctenophora[C]//Proceedings of the Fifth International Conference on Coelenterate Biology. Dordrecht: Springer, 1991.
|
| [146] |
Yamashita H, Suzuki G, Kai S, et al. Establishment of coral–algal symbiosis requires attraction and selection[J]. PLoS One, 2014, 9(5): e97003. doi: 10.1371/journal.pone.0097003
|
| [147] |
Quigley K M, Willis B L, Bay L K. Heritability of the Symbiodinium community in vertically-and horizontally-transmitting broadcast spawning corals[J]. Scientific Reports, 2017, 7(1): 8219. doi: 10.1038/s41598-017-08179-4
|
| [148] |
Quigley K M, Bay L K, Willis B L. Temperature and water quality-related patterns in sediment-associated Symbiodinium communities impact symbiont uptake and fitness of juveniles in the genus Acropora[J]. Frontiers in Marine Science, 2017, 4: 401. doi: 10.3389/fmars.2017.00401
|
| [149] |
Yorifuji M, Harii S, Nakamura R, et al. Shift of symbiont communities in Acropora tenuis juveniles under heat stress[J]. PeerJ, 2017, 5: e4055. doi: 10.7717/peerj.4055
|
| [150] |
Turnham K E, Lewis A M, Kemp D W, et al. Limited persistence of the heat-tolerant zooxanthella, Durusdinium trenchii, in corals transplanted to a barrier reef where it is rare among natal colonies[J]. Coral Reefs, 2025, 44(2): 555−570. doi: 10.1007/s00338-025-02625-w
|
| [151] |
Sun Youfang, Jiang Lei, Gong Sanqiang, et al. Impact of ocean warming and acidification on symbiosis establishment and gene expression profiles in recruits of reef coral Acropora intermedia[J]. Frontiers in Microbiology, 2020, 11: 532447. doi: 10.3389/fmicb.2020.532447
|
| [152] |
Abrego D, Van Oppen M J H, Willis B L. Onset of algal endosymbiont specificity varies among closely related species of Acropora corals during early ontogeny[J]. Molecular Ecology, 2009, 18(16): 3532−3543. doi: 10.1111/j.1365-294X.2009.04276.x
|
| [153] |
Cumbo V R, Van Oppen M J H, Baird A H. Temperature and Symbiodinium physiology affect the establishment and development of symbiosis in corals[J]. Marine Ecology Progress Series, 2018, 587: 117−127. doi: 10.3354/meps12441
|
| [154] |
Jiang Lei, Sun Youfang, Zhang Yuyang, et al. Impact of diurnal temperature fluctuations on larval settlement and growth of the reef coral Pocillopora damicornis[J]. Biogeosciences, 2017, 14(24): 5741−5752. doi: 10.5194/bg-14-5741-2017
|
| [155] |
Quigley K M, Baker A C, Coffroth M A, et al. Bleaching resistance and the role of algal endosymbionts[M]//Van Oppen M J H, Lough J M. Coral Bleaching: Patterns, Processes, Causes and Consequences. Cham: Springer, 2018: 111−151.
|
| [156] |
Quigley K M, Alvarez-Roa C, Raina J B, et al. Heat-evolved microalgal symbionts increase thermal bleaching tolerance of coral juveniles without a trade-off against growth[J]. Coral Reefs, 2023, 42(6): 1227−1232. doi: 10.1007/s00338-023-02426-z
|
| [157] |
Maire J, Van Oppen M J H. A role for bacterial experimental evolution in coral bleaching mitigation?[J]. Trends in Microbiology, 2022, 30(3): 217−228. doi: 10.1016/j.tim.2021.07.006
|