| Citation: | Yang Yu,Wang Duyi,Li Ruihua, et al. Comparison of biological characteristics and mussel settlement inducing capabilities of two benthic diatom biofilms[J]. Haiyang Xuebao,2025, 47(11):121–130 doi: 10.12284/hyxb2025132 |
| [1] |
O'Toole G, Kaplan H B, Kolter R. Biofilm formation as microbial development[J]. Annual Review of Microbiology, 2000, 54: 49−79. doi: 10.1146/annurev.micro.54.1.49
|
| [2] |
Dobretsov S, Abed R M M, Teplitski M. Mini-review: inhibition of biofouling by marine microorganisms[J]. Biofouling, 2013, 29(4): 423−441. doi: 10.1080/08927014.2013.776042
|
| [3] |
Qian P Y, Dahms H U. A triangle model: environmental changes affect biofilms that affect larval settlement[C]//Springer series on biofilms. Berlin, Heidelberg: Springer, 2008.
|
| [4] |
Zobell C E, Allen E C. The significance of marine bacteria in the fouling of submerged surfaces[J]. Journal of Bacteriology, 1935, 29(3): 239−251. doi: 10.1128/jb.29.3.239-251.1935
|
| [5] |
Dahms H U, Dobretsov S, Qian Peiyuan. The effect of bacterial and diatom biofilms on the settlement of the bryozoan Bugula neritina[J]. Journal of Experimental Marine Biology and Ecology, 2004, 313(1): 191−209. doi: 10.1016/j.jembe.2004.08.005
|
| [6] |
Xiong Wu, Jousset A, Guo Sai, et al. Soil protist communities form a dynamic hub in the soil microbiome[J]. The ISME Journal, 2018, 12(2): 634−638. doi: 10.1038/ismej.2017.171
|
| [7] |
Broniewski J M, Meaden S, Paterson S, et al. The effect of phage genetic diversity on bacterial resistance evolution[J]. The ISME Journal, 2020, 14(3): 828−836. doi: 10.1038/s41396-019-0577-7
|
| [8] |
Chen Jian, Zhai Ziqin, Lu Lili, et al. Identification and characterization of miRNAs and their predicted mRNAs in the larval development of pearl oyster Pinctada fucata[J]. Marine Biotechnology, 2022, 24(2): 303−319. doi: 10.1007/s10126-022-10105-3
|
| [9] |
牟嘉仪, 胡晓梦, 彭莉华, 等. 细菌运动性对生物被膜的动态演替及其对厚壳贻贝附着的影响[J]. 渔业科学进展, 2023, 44(3): 200−208.
Mu Jiayi, Hu Xiaomeng, Peng Lihua, et al. Effects of bacterial motility on dynamic succession of biofilms and settlement of the mussel Mytilus coruscus[J]. Progress in Fishery Sciences, 2023, 44(3): 200−208.
|
| [10] |
徐嘉康, 王劲松, 方怡涵, 等. 厚壳贻贝肠道细菌的生物被膜对其幼虫和稚贝附着的影响[J]. 海洋学报, 2021, 43(9): 81−91.
Xu Jiakang, Wang Jinsong, Fang Yihan, et al. Effects of intestinal bacterial biofilms on settlement process of larvae and plantigrades in Mytilus coruscus[J]. Haiyang Xuebao, 2021, 43(9): 81−91.
|
| [11] |
解静仪, 王小雨, 李局, 等. 海洋细菌生物被膜可拉酸含量影响厚壳贻贝稚贝附着[J]. 海洋学报, 2023, 45(8): 96−107.
Xie Jingyi, Wang Xiaoyu, Li Ju, et al. Effect of the content of colanic acid in marine bacterial biofilms on the settlement of Mytilus coruscus plantigrades[J]. Haiyang Xuebao, 2023, 45(8): 96−107.
|
| [12] |
Hu Xiaomeng, Peng Lihua, Wu Jingxian, et al. Bacterial c-di-GMP signaling gene affects mussel larval metamorphosis through outer membrane vesicles and lipopolysaccharides[J]. npj Biofilms and Microbiomes, 2024, 10(1): 38. doi: 10.1038/s41522-024-00508-6
|
| [13] |
Xiao Rui, Zheng Yi. Overview of microalgal extracellular polymeric substances (EPS) and their applications[J]. Biotechnology Advances, 2016, 34(7): 1225−1244. doi: 10.1016/j.biotechadv.2016.08.004
|
| [14] |
Tong C Y, Derek C J C. Biofilm formation of benthic diatoms on commercial polyvinylidene fluoride membrane[J]. Algal Research, 2021, 55: 102260. doi: 10.1016/j.algal.2021.102260
|
| [15] |
Passow U. Transparent exopolymer particles (TEP) in aquatic environments[J]. Progress in Oceanography, 2002, 55(3/4): 287−333.
|
| [16] |
Harder T, Lam C, Qian Peiyuan. Induction of larval settlement in the polychaete Hydroides elegans by marine biofilms: an investigation of monospecific diatom films as settlement cues[J]. Marine Ecology Progress Series, 2002, 229: 105−112. doi: 10.3354/meps229105
|
| [17] |
Ab Rahim S A K, Li Jingyu, Satuito C G, et al. The role of diatom-based film as an inducer of metamorphosis in larvae of two species of sea urchin, Pseudocentrotus depressus and Anthocidaris crassispina[J]. Sessile Organisms, 2004, 21(1): 7−12. doi: 10.4282/sosj.21.7
|
| [18] |
Ito S, Kitamura H. Induction of larval metamorphosis in the sea cucumber Stichopus japonicus by periphitic diatoms[J]. Hydrobiologia, 1997, 358(1/3): 281−284.
|
| [19] |
Li Zheng, Liang Xiao, Li Ju, et al. Inhibition of mussel settlement by calcined mussel shell powder through altering biofilms and bacterial community[J]. International Biodeterioration & Biodegradation, 2024, 190: 105791.
|
| [20] |
杨金龙, 慎佩晶, 王冲, 等. 微生物膜对厚壳贻贝稚贝附着的影响[J]. 水产学报, 2013, 37(6): 904−909.
Yang Jinlong, Shen Peijing, Wang Chong, et al, Effects of biofilms on settlement of plantigrades of the mussel Mytilus coruscus[J]. Journal of Fisheries of China, 2013, 37(6): 904−909.
|
| [21] |
Totti C, Romagnoli T, De Stefano M, et al. The diversity of epizoic diatoms: relationships between diatoms and marine invertebrates[M]//Dubinsky Z, Seckbach J. All Flesh is Grass: Plant-Animal Interrelationships. Dordrecht: Springer, 2011: 323−343.
|
| [22] |
Khaw Y S, Khong N M H, Shaharuddin N A, et al. A simple 18S rDNA approach for the identification of cultured eukaryotic microalgae with an emphasis on primers[J]. Journal of Microbiological Methods, 2020, 172: 105890. doi: 10.1016/j.mimet.2020.105890
|
| [23] |
Xiao Yuan, Liu Yongding, Wang Gaohong, et al. Simulated microgravity alters growth and microcystin production in Microcystis aeruginosa (cyanophyta)[J]. Toxicon, 2010, 56(1): 1−7. doi: 10.1016/j.toxicon.2010.01.026
|
| [24] |
González-Machado C, Capita R, Riesco-Peláez F, et al. Visualization and quantification of the cellular and extracellular components of Salmonella Agona biofilms at different stages of development[J]. PLoS One, 2018, 13(7): e0200011. doi: 10.1371/journal.pone.0200011
|
| [25] |
王大志, 黄世玉, 程兆第. 三种海洋硅藻胞外多聚物形态、微细结构及组成的初步研究[J]. 海洋与湖沼, 2004, 35(3): 273−278.
Wang Dazhi, Huang Shiyu, Cheng Zhaodi. Morphology, fine structure and chemical composition of extracellular polymeric substances in three marine diatom species[J]. Oceanologia et Limnologia Sinica, 2004, 35(3): 273−278.
|
| [26] |
Dobretsov S, Abed R M M, Voolstra C R. The effect of surface colour on the formation of marine micro and macrofouling communities[J]. Biofouling, 2013, 29(6): 617−627. doi: 10.1080/08927014.2013.784279
|
| [27] |
Cox E J. Variation in patterns of valve morphogenesis between representatives of six biraphid diatom genera (Bacillariophyceae)[J]. Journal of Phycology, 1999, 35(6): 1297−1312. doi: 10.1046/j.1529-8817.1999.3561297.x
|
| [28] |
Gitelson A. Towards a generic approach to remote non-invasive estimation of foliar carotenoid-to-chlorophyll ratio[J]. Journal of Plant Physiology, 2020, 252: 153227. doi: 10.1016/j.jplph.2020.153227
|
| [29] |
孟顺龙, 裘丽萍, 王菁, 等. 光照对普通小球藻和鱼腥藻生长竞争的影响[J]. 生态环境学报, 2015, 24(10): 1654−1659.
Meng Shunlong, Qiu Liping, Wang Jing, et al. Effect of light intensity on growth and competition between Chlorella Vulgaris and Anabaena[J]. Ecology and Environmental Sciences, 2015, 24(10): 1654−1659.
|
| [30] |
Sunagawa S, Cortés J, Jiménez C, et al. Variation in cell densities and pigment concentrations of symbiotic dinoflagellates in the coral Pavona clavus in the eastern Pacific (Costa Rica)[J]. Ciencias Marinas, 2008, 34(2): 113−123.
|
| [31] |
柳欣, 左林子, 黄春秀, 等. 优势硅藻和定鞭金藻不同生长阶段光合色素比值变化[J]. 海洋环境科学, 2012, 31(6): 793−797.
Liu Xin, Zuo Linzi, Huang Chunxiu, et al. The variation of of typical diatoms and haptophytes in different growth phases[J]. Marine Environmental Science, 2012, 31(6): 793−797.
|
| [32] |
Aslam S N, Strauss J, Thomas D N, et al. Identifying metabolic pathways for production of extracellular polymeric substances by the diatom Fragilariopsis cylindrus inhabiting sea ice[J]. The ISME Journal, 2018, 12(5): 1237−1251. doi: 10.1038/s41396-017-0039-z
|
| [33] |
陈琪, 郑纪勇, 杨靖亚, 等. 海洋底栖硅藻胞外多聚物化学成分的定量研究[J]. 海洋环境科学, 2016, 35(5): 641−646.
Chen Qi, Zheng Jiyong, Yang Jingya, et al. Studies on the chemical compositions of extracellular polymeric substances from marine benthic diatoms[J]. Marine Environmental Science, 2016, 35(5): 641−646.
|
| [34] |
Aono Y, Asikin Y, Wang Ning, et al. High-throughput chlorophyll and carotenoid profiling reveals positive associations with sugar and apocarotenoid volatile content in fruits of tomato varieties in modern and wild accessions[J]. Metabolites, 2021, 11(6): 398. doi: 10.3390/metabo11060398
|
| [35] |
杜美荣, 方建光, 毛玉泽, 等. 底栖硅藻生物膜附着基对扇贝幼虫附着和变态的影响[J]. 海洋与湖沼, 2020, 51(1): 125−131.
Du Meirong, Fang Jianguang, Mao Yuze, et al. Effect of benthic diatom filmed substrate on settlement and metamorphosis of scallop[J]. Oceanologia et Limnologia Sinica, 2020, 51(1): 125−131.
|
| [36] |
Jouuchi T, Satuito C G, Kitamura H. Sugar compound products of the periphytic diatom Navicula ramosissima induce larval settlement in the barnacle, Amphibalanus amphitrite[J]. Marine Biology, 2007, 152(5): 1065−1076. doi: 10.1007/s00227-007-0753-6
|
| [37] |
Castilla-Gavilán M, Reznicov M, Turpin V, et al. Sea urchin recruitment: effect of diatom based biofilms on Paracentrotus lividus competent larvae[J]. Aquaculture, 2020, 515: 734559. doi: 10.1016/j.aquaculture.2019.734559
|
| [38] |
王吉桥, 丛文虎, 姜玉声, 等. 仿刺参幼体对底栖硅藻附着基的选择性及其摄食器官发育的研究[J]. 大连海洋大学学报, 2010, 25(4): 298−307.
Wang Jiqiao, Cong Wenhu, Jiang Yusheng, et al. Effects of benthic diatom species and density on settlement and ontogenetic development of feeding organs in sea cucumber Apostichopus japonicus[J]. Journal of Dalian Ocean University, 2010, 25(4): 298−307.
|
| [39] |
Kawamura T, Nimura Y, Hirano R. Effects of bacterial films on diatom attachment in the initial phase of marine fouling[J]. Journal of the Oceanographical Society of Japan, 1988, 44(1): 1−5. doi: 10.1007/BF02303145
|
| [40] |
鲍康德, 张小平, 郑维发. 海洋浮游硅藻胞外多糖研究进展[J]. 安徽师范大学学报(自然科学版), 2005, 28(2): 214−217.
Bao Kangde, Zhang Xiaoping, Zheng Weifa. Reserch advances on extracellular polysaccharides of marine planktonic diatom[J]. Journal of Anhui Normal University (Natural Science), 2005, 28(2): 214−217.
|
| [41] |
Sutherland I W. The biofilm matrix–an immobilized but dynamic microbial environment[J]. Trends in Microbiology, 2001, 9(5): 222−227. doi: 10.1016/S0966-842X(01)02012-1
|
| [42] |
Wingender J, Strathmann M, Rode A, et al. Isolation and biochemical characterization of extracellular polymeric substances from Pseudomonas aeruginosa[J]. Methods in Enzymology, 2001, 336: 302−314.
|
| [43] |
Zupo V, Glaviano F, Caramiello D, et al. Effect of five benthic diatoms on the survival and development of Paracentrotus lividus post-larvae in the laboratory[J]. Aquaculture, 2018, 495: 13−20. doi: 10.1016/j.aquaculture.2018.05.028
|
| [44] |
Lam C, Harder T, Qian Peiyuan. Growth conditions of benthic diatoms affect quality of extracellular polymeric larval settlement cues[J]. Marine Ecology Progress Series, 2005, 294: 109−116. doi: 10.3354/meps294109
|
| [45] |
中国水产科学研究院黄海水产研究所. 一种促进双壳贝类附着变态的舟形藻活性物质及其应用[P]. 中国: 202311602214.1, 2025-07-08.
Yellow Sea Fisheries Research Institute. Navicula navicula active substance for promoting adhesion and metamorphosis of bivalve and application of navicula navicula active substance[P]. CN: 202311602214.1, 2025-07-08.
|
| [46] |
Perotti O N, Viramontes-Esparza G, Booth D S. A red algal polysaccharide influences the multicellular development of the choanoflagellate Salpingoeca rosetta[J]. Current Biology, 2025, 35(15): 3767−3776. e4.
|
| [47] |
Sun Yongxin, Rabbi M H, Ma Shuhui, et al. Effect of dietary Cordyceps polysaccharide supplementation on intestinal microflora and immune response of Apostichopus japonicus[J]. Aquaculture Research, 2021, 52(11): 5198−5212. doi: 10.1111/are.15389
|
| [48] |
Rajitha K, Nancharaiah Y V, Venugopalan V P. Role of bacterial biofilms and their EPS on settlement of barnacle (Amphibalanus reticulatus) larvae[J]. International Biodeterioration & Biodegradation, 2020, 150: 104958.
|
| [49] |
Dreanno C, Matsumura K, Dohmae N, et al. An α2-macroglobulin-like protein is the cue to gregarious settlement of the barnacle Balanus amphitrite[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(39): 14396−14401.
|
| [50] |
Peng Lihua, Liang Xiao, Chang Ruiheng, et al. A bacterial polysaccharide biosynthesis-related gene inversely regulates larval settlement and metamorphosis of Mytilus coruscus[J]. Biofouling, 2020, 36(7): 753−765. doi: 10.1080/08927014.2020.1807520
|