Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 47 Issue 11
Nov.  2025
Turn off MathJax
Article Contents
Yang Yu,Wang Duyi,Li Ruihua, et al. Comparison of biological characteristics and mussel settlement inducing capabilities of two benthic diatom biofilms[J]. Haiyang Xuebao,2025, 47(11):121–130 doi: 10.12284/hyxb2025132
Citation: Yang Yu,Wang Duyi,Li Ruihua, et al. Comparison of biological characteristics and mussel settlement inducing capabilities of two benthic diatom biofilms[J]. Haiyang Xuebao,2025, 47(11):121–130 doi: 10.12284/hyxb2025132

Comparison of biological characteristics and mussel settlement inducing capabilities of two benthic diatom biofilms

doi: 10.12284/hyxb2025132
  • Received Date: 2025-08-18
  • Rev Recd Date: 2025-09-28
  • Available Online: 2025-10-11
  • Publish Date: 2025-11-30
  • Diatoms, as an important component of biofilms, can induce the settlement of invertebrates such as mussels. Extracellular polymeric substances (EPS) secreted by diatom play important roles in the induction process. However, the mechanism by which diatoms promote mussel settlement remains unclear. Diatom EPS typically consists of polysaccharides, proteins, nucleic acids, and other substances, with specific composition varying among species. To investigate the biological characteristics of different diatom biofilms and their ability to induce the settlement of Mytilus coruscus, two strains of diatoms were isolated and purified from natural biofilms in this study. After a cultivation period of 21 days, the chlorophyll a content and density of the diatom biofilm were measured. Moreover, its inducing activity on mussel settlement was investigated. Bound EPS from marine diatom biofilms was extracted using a hot solvent extraction method, and the content of polysaccharides and proteins was measured. The results showed that the biofilm of Navicula pelliculosa had high induction activity for mussel larvae settlement (63.8%), while the biofilm of Nitzschia traheaformis showed no difference from the blank group. Analysis by confocal laser scanning microscopy revealed that Navicula pelliculosa biofilm contained more extracellular polysaccharides, with water-insoluble polysaccharide components accounting for 51.49%. In contrast, Nitzschia traheaformis biofilms contained a higher proportion of protein components. This study preliminarily explored the biological characteristics of different marine diatom biofilms, providing theoretical support for understanding how diatom biofilm extracellular substances induce mussel larvae settlement.
  • loading
  • [1]
    O'Toole G, Kaplan H B, Kolter R. Biofilm formation as microbial development[J]. Annual Review of Microbiology, 2000, 54: 49−79. doi: 10.1146/annurev.micro.54.1.49
    [2]
    Dobretsov S, Abed R M M, Teplitski M. Mini-review: inhibition of biofouling by marine microorganisms[J]. Biofouling, 2013, 29(4): 423−441. doi: 10.1080/08927014.2013.776042
    [3]
    Qian P Y, Dahms H U. A triangle model: environmental changes affect biofilms that affect larval settlement[C]//Springer series on biofilms. Berlin, Heidelberg: Springer, 2008.
    [4]
    Zobell C E, Allen E C. The significance of marine bacteria in the fouling of submerged surfaces[J]. Journal of Bacteriology, 1935, 29(3): 239−251. doi: 10.1128/jb.29.3.239-251.1935
    [5]
    Dahms H U, Dobretsov S, Qian Peiyuan. The effect of bacterial and diatom biofilms on the settlement of the bryozoan Bugula neritina[J]. Journal of Experimental Marine Biology and Ecology, 2004, 313(1): 191−209. doi: 10.1016/j.jembe.2004.08.005
    [6]
    Xiong Wu, Jousset A, Guo Sai, et al. Soil protist communities form a dynamic hub in the soil microbiome[J]. The ISME Journal, 2018, 12(2): 634−638. doi: 10.1038/ismej.2017.171
    [7]
    Broniewski J M, Meaden S, Paterson S, et al. The effect of phage genetic diversity on bacterial resistance evolution[J]. The ISME Journal, 2020, 14(3): 828−836. doi: 10.1038/s41396-019-0577-7
    [8]
    Chen Jian, Zhai Ziqin, Lu Lili, et al. Identification and characterization of miRNAs and their predicted mRNAs in the larval development of pearl oyster Pinctada fucata[J]. Marine Biotechnology, 2022, 24(2): 303−319. doi: 10.1007/s10126-022-10105-3
    [9]
    牟嘉仪, 胡晓梦, 彭莉华, 等. 细菌运动性对生物被膜的动态演替及其对厚壳贻贝附着的影响[J]. 渔业科学进展, 2023, 44(3): 200−208.

    Mu Jiayi, Hu Xiaomeng, Peng Lihua, et al. Effects of bacterial motility on dynamic succession of biofilms and settlement of the mussel Mytilus coruscus[J]. Progress in Fishery Sciences, 2023, 44(3): 200−208.
    [10]
    徐嘉康, 王劲松, 方怡涵, 等. 厚壳贻贝肠道细菌的生物被膜对其幼虫和稚贝附着的影响[J]. 海洋学报, 2021, 43(9): 81−91.

    Xu Jiakang, Wang Jinsong, Fang Yihan, et al. Effects of intestinal bacterial biofilms on settlement process of larvae and plantigrades in Mytilus coruscus[J]. Haiyang Xuebao, 2021, 43(9): 81−91.
    [11]
    解静仪, 王小雨, 李局, 等. 海洋细菌生物被膜可拉酸含量影响厚壳贻贝稚贝附着[J]. 海洋学报, 2023, 45(8): 96−107.

    Xie Jingyi, Wang Xiaoyu, Li Ju, et al. Effect of the content of colanic acid in marine bacterial biofilms on the settlement of Mytilus coruscus plantigrades[J]. Haiyang Xuebao, 2023, 45(8): 96−107.
    [12]
    Hu Xiaomeng, Peng Lihua, Wu Jingxian, et al. Bacterial c-di-GMP signaling gene affects mussel larval metamorphosis through outer membrane vesicles and lipopolysaccharides[J]. npj Biofilms and Microbiomes, 2024, 10(1): 38. doi: 10.1038/s41522-024-00508-6
    [13]
    Xiao Rui, Zheng Yi. Overview of microalgal extracellular polymeric substances (EPS) and their applications[J]. Biotechnology Advances, 2016, 34(7): 1225−1244. doi: 10.1016/j.biotechadv.2016.08.004
    [14]
    Tong C Y, Derek C J C. Biofilm formation of benthic diatoms on commercial polyvinylidene fluoride membrane[J]. Algal Research, 2021, 55: 102260. doi: 10.1016/j.algal.2021.102260
    [15]
    Passow U. Transparent exopolymer particles (TEP) in aquatic environments[J]. Progress in Oceanography, 2002, 55(3/4): 287−333.
    [16]
    Harder T, Lam C, Qian Peiyuan. Induction of larval settlement in the polychaete Hydroides elegans by marine biofilms: an investigation of monospecific diatom films as settlement cues[J]. Marine Ecology Progress Series, 2002, 229: 105−112. doi: 10.3354/meps229105
    [17]
    Ab Rahim S A K, Li Jingyu, Satuito C G, et al. The role of diatom-based film as an inducer of metamorphosis in larvae of two species of sea urchin, Pseudocentrotus depressus and Anthocidaris crassispina[J]. Sessile Organisms, 2004, 21(1): 7−12. doi: 10.4282/sosj.21.7
    [18]
    Ito S, Kitamura H. Induction of larval metamorphosis in the sea cucumber Stichopus japonicus by periphitic diatoms[J]. Hydrobiologia, 1997, 358(1/3): 281−284.
    [19]
    Li Zheng, Liang Xiao, Li Ju, et al. Inhibition of mussel settlement by calcined mussel shell powder through altering biofilms and bacterial community[J]. International Biodeterioration & Biodegradation, 2024, 190: 105791.
    [20]
    杨金龙, 慎佩晶, 王冲, 等. 微生物膜对厚壳贻贝稚贝附着的影响[J]. 水产学报, 2013, 37(6): 904−909.

    Yang Jinlong, Shen Peijing, Wang Chong, et al, Effects of biofilms on settlement of plantigrades of the mussel Mytilus coruscus[J]. Journal of Fisheries of China, 2013, 37(6): 904−909.
    [21]
    Totti C, Romagnoli T, De Stefano M, et al. The diversity of epizoic diatoms: relationships between diatoms and marine invertebrates[M]//Dubinsky Z, Seckbach J. All Flesh is Grass: Plant-Animal Interrelationships. Dordrecht: Springer, 2011: 323−343.
    [22]
    Khaw Y S, Khong N M H, Shaharuddin N A, et al. A simple 18S rDNA approach for the identification of cultured eukaryotic microalgae with an emphasis on primers[J]. Journal of Microbiological Methods, 2020, 172: 105890. doi: 10.1016/j.mimet.2020.105890
    [23]
    Xiao Yuan, Liu Yongding, Wang Gaohong, et al. Simulated microgravity alters growth and microcystin production in Microcystis aeruginosa (cyanophyta)[J]. Toxicon, 2010, 56(1): 1−7. doi: 10.1016/j.toxicon.2010.01.026
    [24]
    González-Machado C, Capita R, Riesco-Peláez F, et al. Visualization and quantification of the cellular and extracellular components of Salmonella Agona biofilms at different stages of development[J]. PLoS One, 2018, 13(7): e0200011. doi: 10.1371/journal.pone.0200011
    [25]
    王大志, 黄世玉, 程兆第. 三种海洋硅藻胞外多聚物形态、微细结构及组成的初步研究[J]. 海洋与湖沼, 2004, 35(3): 273−278.

    Wang Dazhi, Huang Shiyu, Cheng Zhaodi. Morphology, fine structure and chemical composition of extracellular polymeric substances in three marine diatom species[J]. Oceanologia et Limnologia Sinica, 2004, 35(3): 273−278.
    [26]
    Dobretsov S, Abed R M M, Voolstra C R. The effect of surface colour on the formation of marine micro and macrofouling communities[J]. Biofouling, 2013, 29(6): 617−627. doi: 10.1080/08927014.2013.784279
    [27]
    Cox E J. Variation in patterns of valve morphogenesis between representatives of six biraphid diatom genera (Bacillariophyceae)[J]. Journal of Phycology, 1999, 35(6): 1297−1312. doi: 10.1046/j.1529-8817.1999.3561297.x
    [28]
    Gitelson A. Towards a generic approach to remote non-invasive estimation of foliar carotenoid-to-chlorophyll ratio[J]. Journal of Plant Physiology, 2020, 252: 153227. doi: 10.1016/j.jplph.2020.153227
    [29]
    孟顺龙, 裘丽萍, 王菁, 等. 光照对普通小球藻和鱼腥藻生长竞争的影响[J]. 生态环境学报, 2015, 24(10): 1654−1659.

    Meng Shunlong, Qiu Liping, Wang Jing, et al. Effect of light intensity on growth and competition between Chlorella Vulgaris and Anabaena[J]. Ecology and Environmental Sciences, 2015, 24(10): 1654−1659.
    [30]
    Sunagawa S, Cortés J, Jiménez C, et al. Variation in cell densities and pigment concentrations of symbiotic dinoflagellates in the coral Pavona clavus in the eastern Pacific (Costa Rica)[J]. Ciencias Marinas, 2008, 34(2): 113−123.
    [31]
    柳欣, 左林子, 黄春秀, 等. 优势硅藻和定鞭金藻不同生长阶段光合色素比值变化[J]. 海洋环境科学, 2012, 31(6): 793−797.

    Liu Xin, Zuo Linzi, Huang Chunxiu, et al. The variation of of typical diatoms and haptophytes in different growth phases[J]. Marine Environmental Science, 2012, 31(6): 793−797.
    [32]
    Aslam S N, Strauss J, Thomas D N, et al. Identifying metabolic pathways for production of extracellular polymeric substances by the diatom Fragilariopsis cylindrus inhabiting sea ice[J]. The ISME Journal, 2018, 12(5): 1237−1251. doi: 10.1038/s41396-017-0039-z
    [33]
    陈琪, 郑纪勇, 杨靖亚, 等. 海洋底栖硅藻胞外多聚物化学成分的定量研究[J]. 海洋环境科学, 2016, 35(5): 641−646.

    Chen Qi, Zheng Jiyong, Yang Jingya, et al. Studies on the chemical compositions of extracellular polymeric substances from marine benthic diatoms[J]. Marine Environmental Science, 2016, 35(5): 641−646.
    [34]
    Aono Y, Asikin Y, Wang Ning, et al. High-throughput chlorophyll and carotenoid profiling reveals positive associations with sugar and apocarotenoid volatile content in fruits of tomato varieties in modern and wild accessions[J]. Metabolites, 2021, 11(6): 398. doi: 10.3390/metabo11060398
    [35]
    杜美荣, 方建光, 毛玉泽, 等. 底栖硅藻生物膜附着基对扇贝幼虫附着和变态的影响[J]. 海洋与湖沼, 2020, 51(1): 125−131.

    Du Meirong, Fang Jianguang, Mao Yuze, et al. Effect of benthic diatom filmed substrate on settlement and metamorphosis of scallop[J]. Oceanologia et Limnologia Sinica, 2020, 51(1): 125−131.
    [36]
    Jouuchi T, Satuito C G, Kitamura H. Sugar compound products of the periphytic diatom Navicula ramosissima induce larval settlement in the barnacle, Amphibalanus amphitrite[J]. Marine Biology, 2007, 152(5): 1065−1076. doi: 10.1007/s00227-007-0753-6
    [37]
    Castilla-Gavilán M, Reznicov M, Turpin V, et al. Sea urchin recruitment: effect of diatom based biofilms on Paracentrotus lividus competent larvae[J]. Aquaculture, 2020, 515: 734559. doi: 10.1016/j.aquaculture.2019.734559
    [38]
    王吉桥, 丛文虎, 姜玉声, 等. 仿刺参幼体对底栖硅藻附着基的选择性及其摄食器官发育的研究[J]. 大连海洋大学学报, 2010, 25(4): 298−307.

    Wang Jiqiao, Cong Wenhu, Jiang Yusheng, et al. Effects of benthic diatom species and density on settlement and ontogenetic development of feeding organs in sea cucumber Apostichopus japonicus[J]. Journal of Dalian Ocean University, 2010, 25(4): 298−307.
    [39]
    Kawamura T, Nimura Y, Hirano R. Effects of bacterial films on diatom attachment in the initial phase of marine fouling[J]. Journal of the Oceanographical Society of Japan, 1988, 44(1): 1−5. doi: 10.1007/BF02303145
    [40]
    鲍康德, 张小平, 郑维发. 海洋浮游硅藻胞外多糖研究进展[J]. 安徽师范大学学报(自然科学版), 2005, 28(2): 214−217.

    Bao Kangde, Zhang Xiaoping, Zheng Weifa. Reserch advances on extracellular polysaccharides of marine planktonic diatom[J]. Journal of Anhui Normal University (Natural Science), 2005, 28(2): 214−217.
    [41]
    Sutherland I W. The biofilm matrix–an immobilized but dynamic microbial environment[J]. Trends in Microbiology, 2001, 9(5): 222−227. doi: 10.1016/S0966-842X(01)02012-1
    [42]
    Wingender J, Strathmann M, Rode A, et al. Isolation and biochemical characterization of extracellular polymeric substances from Pseudomonas aeruginosa[J]. Methods in Enzymology, 2001, 336: 302−314.
    [43]
    Zupo V, Glaviano F, Caramiello D, et al. Effect of five benthic diatoms on the survival and development of Paracentrotus lividus post-larvae in the laboratory[J]. Aquaculture, 2018, 495: 13−20. doi: 10.1016/j.aquaculture.2018.05.028
    [44]
    Lam C, Harder T, Qian Peiyuan. Growth conditions of benthic diatoms affect quality of extracellular polymeric larval settlement cues[J]. Marine Ecology Progress Series, 2005, 294: 109−116. doi: 10.3354/meps294109
    [45]
    中国水产科学研究院黄海水产研究所. 一种促进双壳贝类附着变态的舟形藻活性物质及其应用[P]. 中国: 202311602214.1, 2025-07-08.

    Yellow Sea Fisheries Research Institute. Navicula navicula active substance for promoting adhesion and metamorphosis of bivalve and application of navicula navicula active substance[P]. CN: 202311602214.1, 2025-07-08.
    [46]
    Perotti O N, Viramontes-Esparza G, Booth D S. A red algal polysaccharide influences the multicellular development of the choanoflagellate Salpingoeca rosetta[J]. Current Biology, 2025, 35(15): 3767−3776. e4.
    [47]
    Sun Yongxin, Rabbi M H, Ma Shuhui, et al. Effect of dietary Cordyceps polysaccharide supplementation on intestinal microflora and immune response of Apostichopus japonicus[J]. Aquaculture Research, 2021, 52(11): 5198−5212. doi: 10.1111/are.15389
    [48]
    Rajitha K, Nancharaiah Y V, Venugopalan V P. Role of bacterial biofilms and their EPS on settlement of barnacle (Amphibalanus reticulatus) larvae[J]. International Biodeterioration & Biodegradation, 2020, 150: 104958.
    [49]
    Dreanno C, Matsumura K, Dohmae N, et al. An α2-macroglobulin-like protein is the cue to gregarious settlement of the barnacle Balanus amphitrite[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(39): 14396−14401.
    [50]
    Peng Lihua, Liang Xiao, Chang Ruiheng, et al. A bacterial polysaccharide biosynthesis-related gene inversely regulates larval settlement and metamorphosis of Mytilus coruscus[J]. Biofouling, 2020, 36(7): 753−765. doi: 10.1080/08927014.2020.1807520
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article views (165) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return