| Citation: | Wu Yuchen,Xu Hailong. Application of ARIMA and XGBoost to analyze and predict China’s coastal capture production[J]. Haiyang Xuebao,2025, 47(11):131–140 doi: 10.12284/hyxb2025130 |
| [1] |
金显仕, 田洪林, 单秀娟. 我国近海渔业资源研究历程及展望[J]. 水产学报, 2023, 47(11): 119310.
Jin Xianshi, Tian Honglin, Shan Xiujuan. Development and prospects of studies on inshore fisheries resources in China[J]. Journal of Fisheries of China, 2023, 47(11): 119310.
|
| [2] |
粮农组织. 2022年世界渔业和水产养殖状况: 努力实现蓝色转型[R]. 罗马: 联合国粮食及农业组织. 2022.
FAO. The State of World Fisheries and Aquaculture 2022: Towards Blue Transformation[R]. Rome: FAO. 2022.
|
| [3] |
Costello C, Ovando D. Status, institutions, and prospects for global capture fisheries[J]. Annual Review of Environment and Resources, 2019, 44: 177−200. doi: 10.1146/annurev-environ-101718-033310
|
| [4] |
Froese R, Zeller D, Kleisner K, et al. What catch data can tell us about the status of global fisheries[J]. Marine Biology, 2012, 159(6): 1283−1292. doi: 10.1007/s00227-012-1909-6
|
| [5] |
韩杨. 1949年以来中国海洋渔业资源治理与政策调整[J]. 中国农村经济, 2018(9): 14−28.
Han Yang. Marine fishery resources management and policy adjustment in China since 1949[J]. Chinese Rural Economy, 2018(9): 14−28.
|
| [6] |
刘子飞. 我国近海捕捞渔业管理政策困境、逻辑与取向[J]. 生态经济, 2018, 34(11): 47−53.
Liu Zifei. Research on management policies of marine capture fishery resources: issues, logic and choice[J]. Ecological Economy, 2018, 34(11): 47−53.
|
| [7] |
丁依婷, 胡志远, 董帝渤. 基于深度学习和时空特征融合的海洋渔船密度预测方法[J]. 应用海洋学学报, 2024, 43(2): 350−359.
Ding Yiting, Hu Zhiyuan, Dong Dibo. A density prediction method for fishing vessel based on deep learning and fusion of spatial-temporal features[J]. Journal of Applied Oceanography, 2024, 43(2): 350−359.
|
| [8] |
张忠, 陈新军, 余为. 基于灰色理论系统的西非海域捕捞渔获量预测[J]. 上海海洋大学学报, 2023, 32(4): 818−828.
Zhang Zhong, Chen Xinjun, Yu Wei. Catch prediction off the coast of West Africa based on grey theory system[J]. Journal of Shanghai Ocean University, 2023, 32(4): 818−828.
|
| [9] |
黄冬梅, 高静霞. 基于SDSS的渔业资源预测决策系统[J]. 计算机工程, 2010, 36(6): 270−272,275.
Huang Dongmei, Gao Jingxia. Fishery resources forecasting decision system based on SDSS[J]. Computer Engineering, 2010, 36(6): 270−272,275.
|
| [10] |
李辉华, 郭弘艺, 唐文乔, 等. ARIMA模型在预测长江靖江段沿岸鱼类渔获量时间格局中的应用[J]. 水产学报, 2008, 32(6): 899−905.
Li Huihua, Guo Hongyi, Tang Wenqiao, et al. ARIMA model application to predict temporal pattern of fish catches of coastal area at Jingjiang Reach of the Yangtze River[J]. Journal of Fisheries of China, 2008, 32(6): 899−905.
|
| [11] |
董江水, 诸英富. 时间序列分析模型在江苏省河蟹总产量预测中的应用[J]. 金陵科技学院学报, 2008, 24(3): 102−105.
Dong Jiangshui, Zhu Yingfu. Application of time series analysis model on total yield of Chinese mitten-handed crab in Jiangsu Province[J]. Journal of Jinling Institute of Technology, 2008, 24(3): 102−105.
|
| [12] |
程炎宏, 樊伟. 东海区海洋捕捞产量的时间序列分析研究[J]. 中国水产科学, 2001, 8(3): 31−34.
Cheng Yanhong, Fan Wei. Study of time-serial analysis of marine capture yield in East China Sea region[J]. Journal of Fishery Sciences of China, 2001, 8(3): 31−34.
|
| [13] |
蔡格菁, 傅海彬, 蒋仁斌, 等. 基于ARIMA模型的渔业经济预测及其优化[J]. 计算机与现代化, 2019(4): 87−91.
Cai Gejing, Fu Haibin, Jiang Renbin, et al. ARIMA based fishing economy prediction model and its optimization[J]. Computer and Modernization, 2019(4): 87−91.
|
| [14] |
宋大德, 汪金涛, 陈新军, 等. 时间序列分析模型在黄海南部小黄鱼资源量预测中的应用[J]. 海洋学报, 2020, 42(12): 26−33.
Song Dade, Wang Jintao, Chen Xinjun, et al. Application of time series analysis model on stock prediction of small yellow croaker (Larimichthys polyactis) in the southern Yellow Sea[J]. Haiyang Xuebao, 2020, 42(12): 26−33.
|
| [15] |
王啸, 刘文俊, 张健. 基于ARIMA的海洋尼诺指数对中西太平洋黄鳍金枪鱼年际CPUE的影响[J]. 南方水产科学, 2023, 19(4): 10−20.
Wang Xiao, Liu Wenjun, Zhang Jian. Effect of Oceanic Niño index on interannual CPUE of yellowfin tuna (Thunnus albacares) in Western and Central Pacific Ocean based on ARIMA model[J]. South China Fisheries Science, 2023, 19(4): 10−20.
|
| [16] |
李辉华, 郭弘艺, 唐文乔, 等. 长江下游靖江段沿岸贝氏䱗渔获量的时间格局及ARIMA模型预测[J]. 中国水产科学, 2009, 16(3): 357−364.
Li Huihua, Guo Hongyi, Tang Wenqiao, et al. Temporal pattern of Hemiculter bleekeri catches at Jingjiang Section of the Yangtze River and catch forecast by using ARIMA model[J]. Journal of Fishery Sciences of China, 2009, 16(3): 357−364.
|
| [17] |
Soykan C U, Eguchi T, Kohin S, et al. Prediction of fishing effort distributions using boosted regression trees[J]. Ecological Applications, 2014, 24(1): 71−83. doi: 10.1890/12-0826.1
|
| [18] |
韩秋影, 黄小平, 施平. 生态补偿在海洋生态资源管理中的应用[J]. 生态学杂志, 2007, 26(1): 126−130.
Han Qiuying, Huang Xiaoping, Shi Ping. Ecological compensation and its application in marine ecological resources management[J]. Chinese Journal of Ecology, 2007, 26(1): 126−130.
|
| [19] |
黄硕琳, 唐议. 渔业管理理论与中国实践的回顾与展望[J]. 水产学报, 2019, 43(1): 211−231.
Huang Shuolin, Tang Yi. Review and prospect of theories of fisheries management and China’s practice[J]. Journal of Fisheries of China, 2019, 43(1): 211−231.
|
| [20] |
Bai Jushan, Perron P. Estimating and testing linear models with multiple structural changes[J]. Econometrica, 1998, 66(1): 47−78. doi: 10.2307/2998540
|
| [21] |
Vaihola S, Kininmonth S. Ecosystem management policy implications based on Tonga main tuna species catch data 2002-2018[J]. Diversity, 2023, 15(10): 1042. doi: 10.3390/d15101042
|
| [22] |
徐海龙, 韩颖, 谷德贤, 等. 渔业资源自然死亡估算方法研究进展[J]. 水产科技情报, 2019, 46(3): 160−164,171.
Xu Hailong, Han Ying, Gu Dexian, et al. Methods of estimated natural mortality in fishery resources assessment[J]. Fisheries Science & Technology Information, 2019, 46(3): 160−164,171.
|
| [23] |
King K B S, Giacomini H C, Wehrly K, et al. Using historical catch data to evaluate predicted changes in fish relative abundance in response to a warming climate[J]. Ecography, 2023, 2023(8): e06798. doi: 10.1111/ecog.06798
|
| [24] |
Aldrin M, Aanes F L, Tvete I F, et al. Caveats with estimating natural mortality rates in stock assessment models using age aggregated catch data and abundance indices[J]. Fisheries Research, 2021, 243: 106071. doi: 10.1016/j.fishres.2021.106071
|
| [25] |
李琪, 刘淑德, 王琨, 等. 渔获量时间序列长度对基于CMSY方法的资源评估结果的影响[J]. 海洋学报, 2023, 45(3): 27−39.
Li Qi, Liu Shude, Wang Kun, et al. Effects of lengths of catch time series on stock assessment using CMSY method[J]. Haiyang Xuebao, 2023, 45(3): 27−39.
|
| [26] |
Miyagawa M, Ichinokawa M, Yoda M, et al. Commentary: stock status assessments for 12 exploited fishery species in the Tsushima Warm Current region, Southwest Japan and East China, using the CMSY and BSM methods[J]. Frontiers in Marine Science, 2021, 8: 703039. doi: 10.3389/fmars.2021.703039
|
| [27] |
Ju Peilong, Tian Yongjun, Chen Mingru, et al. Evaluating stock status of 16 commercial fish species in the coastal and offshore waters of Taiwan using the CMSY and BSM methods[J]. Frontiers in Marine Science, 2020, 7: 618. doi: 10.3389/fmars.2020.00618
|
| [28] |
Bouch P, Minto C, Reid D G. Comparative performance of data-poor CMSY and data-moderate SPiCT stock assessment methods when applied to data-rich, real-world stocks[J]. ICES Journal of Marine Science, 2021, 78(1): 264−276. doi: 10.1093/icesjms/fsaa220
|
| [29] |
Zhai Lu, Liang Cui, Pauly D. Assessments of 16 exploited fish stocks in Chinese waters using the CMSY and BSM methods[J]. Frontiers in Marine Science, 2020, 7: 483993. doi: 10.3389/fmars.2020.483993
|
| [30] |
周淑婷, 邹晓荣, 邹邦郁. 基于改进的XGBoost模型的大西洋大眼金枪鱼渔场预报[J]. 大连海洋大学学报, 2025, 40(3): 481−488.
Zhou Shuting, Zou Xiaorong, Zou Bangyu. Prediction of bigeye tuna (Thunnus obesus) fishing ground in the Atlantic Ocean based on the modified XGBoost model[J]. Journal of Dalian Ocean University, 2025, 40(3): 481−488.
|
| [31] |
袁红春, 高子玥, 张天蛟. 基于改进的XGBoost模型预测南太平洋长鳍金枪鱼资源丰度[J]. 海洋湖沼通报, 2022, 44(2): 112−120.
Yuan Hongchun, Gao Ziyue, Zhang Tianjiao. Prediction of albacore tuna abundance insouth Pacific based on improved XGBoost model[J]. Transactions of Oceanology and Limnology, 2022, 44(2): 112−120.
|