| Citation: | Sun Rui,Ma Yi,Zhang Feifei, et al. Residual SuperPoint underwater coral reef image registration method based on adaptive equalization sample[J]. Haiyang Xuebao,2025, 47(11):154–166 doi: 10.12284/hyxb2025128 |
| [1] |
龙丽娟, 杨芳芳, 韦章良. 珊瑚礁生态系统修复研究进展[J]. 热带海洋学报, 2019, 38(6): 1−8.
Long Lijuan, Yang Fangfang, Wei Zhangliang. A review on ecological restoration techniques of coral reefs[J]. Journal of Tropical Oceanography, 2019, 38(6): 1−8.
|
| [2] |
Ai Bo, Liu Xue, Wen Zhen, et al. A novel coral reef classification method combining radiative transfer model with deep learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 13400−13412. doi: 10.1109/JSTARS.2024.3430899
|
| [3] |
Hedley J D, Roelfsema C M, Chollett I, et al. Remote sensing of coral reefs for monitoring and management: a review[J]. Remote Sensing, 2016, 8(2): 118. doi: 10.3390/rs8020118
|
| [4] |
张飞飞, 任广波, 胡亚斌, 等. 融合地理空间认知的珊瑚礁地貌单元高分遥感分类方法[J]. 海洋技术学报, 2023, 42(1): 1−15.
Zhang Feifei, Ren Guangbo, Hu Yabin, et al. A high-resolution remote sensing classification method of coral reef geomorphic units integrating geospatial cognition[J]. Journal of Ocean Technology, 2023, 42(1): 1−15.
|
| [5] |
Teague J, Megson-Smith D A, Allen M J, et al. A review of current and new optical techniques for coral monitoring[J]. Oceans, 2022, 3(1): 30−45. doi: 10.3390/oceans3010003
|
| [6] |
郑金辉, 任广波, 胡亚斌, 等. 生物天敌暴发导致珊瑚礁退化的高分遥感监测与分析—以南海太平岛为例[J]. 热带地理, 2023, 43(10): 1856−1873.
Zheng Jinhui, Ren Guangbo, Hu Yabin, et al. High resolution remote sensing monitoring and analysis of coral reef degradation caused by outbreaks of biological natural enemies: a case study of the Taiping Island in the South China Sea[J]. Tropical Geography, 2023, 43(10): 1856−1873.
|
| [7] |
Turner J A, Polunin N V C, Field S N, et al. Measuring coral size-frequency distribution using stereo video technology, a comparison with in situ measurements[J]. Environmental Monitoring and Assessment, 2015, 187(5): 234. doi: 10.1007/s10661-015-4431-8
|
| [8] |
Mahmood A, Bennamoun M, An Senjian, et al. Deep image representations for coral image classification[J]. IEEE Journal of Oceanic Engineering, 2019, 44(1): 121−131. doi: 10.1109/JOE.2017.2786878
|
| [9] |
Ghaffar A A, Choi G S. A two-stream deep learning framework for robust coral reef health classification: insights and interpretability[J]. IEEE Access, 2025, 13: 78490−78512. doi: 10.1109/ACCESS.2025.3561226
|
| [10] |
Zheng Ziqiang, Liang Haixin, Wut F H, et al. HKCoral: benchmark for dense coral growth form segmentation in the wild[J]. IEEE Journal of Oceanic Engineering, 2025, 50(2): 697−713. doi: 10.1109/JOE.2024.3494112
|
| [11] |
Casoli E, Ventura D, Mancini G, et al. High spatial resolution photo mosaicking for the monitoring of coralligenous reefs[J]. Coral Reefs, 2021, 40(4): 1267−1280. doi: 10.1007/s00338-021-02136-4
|
| [12] |
Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91−110. doi: 10.1023/B:VISI.0000029664.99615.94
|
| [13] |
Bay H, Tuytelaars T, Van Gool L. Surf: speeded up robust features[C]//Proceedings of the 9th European Conference on Computer Vision. Graz: Springer, 2006: 404−417.
|
| [14] |
Rublee E, Rabaud V, Konolige K, et al. ORB: an efficient alternative to SIFT or SURF[C]//Proceedings of the 2011 International Conference on Computer Vision. Barcelona: IEEE, 2011: 2564−2571.
|
| [15] |
Pang Siqi, Ge Junyao, Hu Lei, et al. RTV-SIFT: harnessing structure information for robust optical and SAR image registration[J]. Remote Sensing, 2023, 15(18): 4476. doi: 10.3390/rs15184476
|
| [16] |
DeTone D, Malisiewicz T, Rabinovich A. SuperPoint: self-supervised interest point detection and description[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake City: IEEE, 2018: 337−33712.
|
| [17] |
Zou Bin, Li Haolin, Zhang Lamei. Self-supervised SAR image registration with SAR-superpoint and transformation aggregation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5201115.
|
| [18] |
曾旭东, 樊绍胜, 续尚植, 等. 低光照环境下基于轻量级SuperPoint的单目VI-SLAM算法[J]. 激光与光电子学进展, 2024, 61(18): 1815001.
Zeng Xudong, Fan Shaosheng, Xu Shangzhi, et al. Monocular VI-SLAM algorithm based on lightweight SuperPoint network in low-light environment[J]. Laser & Optoelectronics Progress, 2024, 61(18): 1815001.
|
| [19] |
Li Zhaoyang, Cao Jie, Hao Qun, et al. DAN-SuperPoint: self-supervised feature point detection algorithm with dual attention network[J]. Sensors, 2022, 22(5): 1940. doi: 10.3390/s22051940
|
| [20] |
赵悦, 储开斌, 张继, 等. 面向复杂环境的特征匹配算法[J]. 计算机应用与软件, 2025, 42(1): 264−270,293.
Zhao Yue, Chu Kaibin, Zhang Ji, et al. Feature point matching algorithms for complex environments[J]. Computer Applications and Software, 2025, 42(1): 264−270,293.
|
| [21] |
Zhong Jiageng, Li Ming, Zhang Hanqi, et al. Fine-grained 3D modeling and semantic mapping of coral reefs using photogrammetric computer vision and machine learning[J]. Sensors, 2023, 23(15): 6753. doi: 10.3390/s23156753
|
| [22] |
Zhong J, Li M, Gruen A, et al. Cutting-edge 3D reconstruction solutions for underwater coral reef images: a review and comparison[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2025, 230: 779−803.
|
| [23] |
Xu Z Q J, Zhang Yaoyu, Xiao Yanyang. Training behavior of deep neural network in frequency domain[C]//Proceedings of the 26th International Conference on Neural Information Processing. Sydney: Springer, 2019: 264−274.
|
| [24] |
Francazi E, Baity-Jesi M, Lucchi A. A theoretical analysis of the learning dynamics under class imbalance[C]//Proceedings of the 40th International Conference on Machine Learning. Honolulu: JMLR. org, 2023: 413.
|
| [25] |
Gao X, Xie D, Zhang Y, et al. A comprehensive survey on imbalanced data learning[J]. arXiv preprint arXiv: 2502.08960, 2025.
|
| [26] |
Wu Xin, Zhang Lin, Huang Jipeng, et al. Underwater image enhancement via modeling white degradation[J]. IEEE Journal of Oceanic Engineering, 2024, 49(4): 1220−1232. doi: 10.1109/JOE.2024.3429653
|
| [27] |
Sang V Q, 冯鹏, 汤斌, 等. 基于米氏散射理论的水中悬浮颗粒物散射特性计算[J]. 激光与光电子学进展, 2015, 52(1): 013001.
Sang V Q, Feng Peng, Tang Bin, et al. Study on properties of light scattering based on Mie scattering theory for suspended particles in water[J]. Laser & Optoelectronics Progress, 2015, 52(1): 013001.
|
| [28] |
Wang Yudong, Guo Jichang, Gao Huan, et al. UIEC^2-Net: CNN-based underwater image enhancement using two color space[J]. Signal Processing: Image Communication, 2021, 96: 116250. doi: 10.1016/j.image.2021.116250
|
| [29] |
Zhang Hanqi, Li Ming, Pan Xiaotian, et al. Novel approaches to enhance coral reefs monitoring with underwater image segmentation[C]//Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Wuhan: ISPRS, 2022: 271−277.
|
| [30] |
Huo Chunling, Zhang Da, Yang Huanyu. An underwater image denoising method based on high-frequency abrupt signal separation and hybrid attention mechanism[J]. Sensors, 2024, 24(14): 4578. doi: 10.3390/s24144578
|
| [31] |
Sarlin P E, DeTone D, Malisiewicz T, et al. Superglue: Learning feature matching with graph neural networks[C]. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 4938−4947.
|
| [32] |
Srivatsan R A, Zevallos N, Vagdargi P, et al. Registration with a small number of sparse measurements[J]. The International Journal of Robotics Research, 2019, 38(12/13): 1403−1419.
|