Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 47 Issue 9
Sep.  2025
Turn off MathJax
Article Contents
Zhang Qianyu,Ma Jiale,Ye Yingying, et al. Complete mitochondrial genome sequencing of Anchisquilla fasciata and phylogenetic analysis of the Squillidae[J]. Haiyang Xuebao,2025, 47(9):129–144 doi: 10.12284/hyxb2025110
Citation: Zhang Qianyu,Ma Jiale,Ye Yingying, et al. Complete mitochondrial genome sequencing of Anchisquilla fasciata and phylogenetic analysis of the Squillidae[J]. Haiyang Xuebao,2025, 47(9):129–144 doi: 10.12284/hyxb2025110

Complete mitochondrial genome sequencing of Anchisquilla fasciata and phylogenetic analysis of the Squillidae

doi: 10.12284/hyxb2025110
  • Received Date: 2025-03-10
  • Rev Recd Date: 2025-05-19
  • Publish Date: 2025-09-30
  • Anchisquilla fasciata belongs to the Squillidae (Latreille, 1802). In this study, the complete mitochondrial genome of Anchisquilla fasciata was obtained through next-generation sequencing technology. Analysis of the basic structural characteristics of the genome revealed that it contains a total of 37 genes, including 13 protein-coding genes (PCGs), 2 rRNA genes, and 22 tRNA genes. Analysis of nucleotide composition showed that A had the highest content at 35.42%, while G had the lowest content at 12.83%. Selection pressure analysis was conducted on the mitochondrial genomes of 11 species within the Squillidae, and it was found that all PCGs were under purifying selection. Additionally, a phylogenetic tree was constructed using the 13 PCGs of mitochondrial genomes from two subclasses of Malacostraca, revealing that the Squillidae forms a monophyletic group with species within the family branching off into a distinct clade, showing clear differentiation from other related Hoplocarida (such as the Lysiosquillidae). Comparison of mitochondrial gene rearrangements within Malacostraca showed that the Stomatopoda did not exhibit any rearrangements. The reconstructed chronogram of divergence times within the Hoplocarida indicated that the earliest diversification of existing species occurred during the Cretaceous period of the Mesozoic era, with a significant diversification of species in the Cenozoic era. These results will provide better insights into the phylogenetic relationships among different species of Squillidae and the evolutionary positions and relationships among subclasses within Malacostraca.
  • loading
  • [1]
    王春琳, 徐善良, 梅文骧, 等. 口虾蛄的生物学基本特征[J]. 浙江水产学院学报, 1996, 17(1): 60−62.

    Wang Chunlin, Xu Shanliang, Mei Wenxiang, et al. A biological basic character of the Oratosquilla oratoria[J]. Journal of Zhejiang College of Fisheries, 1996, 17(1): 60−62.
    [2]
    魏崇德. 浙江动物志·甲壳类[M]. 杭州: 浙江科学技术出版社, 1991.

    Wei Chongde. Fauna of Zhejiang: Crustacea[M]. Hangzhou: Zhejiang Science and Technology Press, 1991.
    [3]
    任中杰. 全长转录组揭示口虾蛄复眼识别圆偏振光的分子特征[D]. 烟台: 烟台大学, 2024.

    Ren Zhongjie. Full-length transcriptome reveals the molecular characteristic of the compound eye of Oratosquilla oratoria in recognition of circularly polarization light[D]. Yantai: Yantai University, 2024.
    [4]
    杜欣蔚. 中国东部近海口虾蛄群体遗传多样性研究[D]. 舟山: 浙江海洋大学, 2016.

    Du Xinwei. Genetic population genetic variation of Oratosquilla oratoria in eastern coastal waters of China[D]. Zhoushan: Zhejiang Ocean University, 2016.
    [5]
    隋宥珍, 刘连为, 徐开达, 等. 基于线粒体Cytb基因的口虾蛄种群遗传结构研究[J]. 大连海洋大学学报, 2019, 34(3): 355−361.

    Sui Youzhen, Liu Lianwei, Xu Kaida, et al. Population genetic structure of mantis shrimp Oratosquilla oratoria based on the partial mitochondrial DNA cytochrome b gene[J]. Journal of Dalian Ocean University, 2019, 34(3): 355−361.
    [6]
    沙忠利, 王永良, 程娇. 基于线粒体COI序列的DNA条形码在中国海口足类物种鉴定中的应用分析[J]. 中国水产科学, 2018, 25(4): 858−866. doi: 10.3724/SP.J.1118.2018.17338

    Sha Zhongli, Wang Yongliang, Cheng Jiao. Application of mitochondrial COI-based DNA barcoding for the identification of stomatopod species (Crustacea, Stomatopoda) in the China seas[J]. Journal of Fishery Sciences of China, 2018, 25(4): 858−866. doi: 10.3724/SP.J.1118.2018.17338
    [7]
    Hamano T, Matsuura S. Egg laying and egg mass nursing behaviour in the Japanese mantis shrimp[J]. Nippon Suisan Gakkaishi, 1984, 50(12): 1969−1973. doi: 10.2331/suisan.50.1969
    [8]
    Hamano T, Matsuura S. Egg size, duration of incubation, and larval development of the Japanese mantis shrimp in the laboratory[J]. Nippon Suisan Gakkaishi, 1987, 53(1): 23−39. doi: 10.2331/suisan.53.23
    [9]
    Hamano T. Mating behavior of Oratosquilla oratoria (De Haan, 1844) (Crustacea: stomatopoda)[J]. Journal of Crustacean Biology, 1988, 8(2): 239−244. doi: 10.2307/1548315
    [10]
    Hamano T, Matsuura S. Food habits of the Japanese mantis shrimp in the benthic community of Hakata Bay[J]. Nippon Suisan Gakkaishi, 1986, 52(5): 787−794. doi: 10.2331/suisan.52.787
    [11]
    Hamano T. Growth of the stomatopod crustacean Oratosquilla oratoria in Hakata Bay[J]. Nippon Suisan Gakkaishi, 1990, 56(9): 1529. doi: 10.2331/suisan.56.1529
    [12]
    Manning R B. Stomatopoda from the collection of his majesty the emperor of Japan[J]. Crustaceana, 1965, 9(3): 249−262. doi: 10.1163/156854065X00037
    [13]
    Manning R B. A revision of the family Squillidae (Crustacea, Stomatopoda), with the description of eight new genera[J]. Bulletin of marine Science, 1968, 18(1): 105−142.
    [14]
    Manning R B. Stomatopod Crustacea from Madagascar[J]. Proceedings of the United States National Museum, 1968, 124: 1−6.
    [15]
    Manning R B. Stomatopod crustacea of vietnam: the legacy of raoul Serène[J]. Crustacean Research, 1995, 1995(4): 1−339.
    [16]
    Manning R B. Keys to the species of Oratosquilla (Crustacea: stomatopoda), with descriptions of two new species[J]. Smithsonian Contributions to Zoology, 1971, 71: 1−16.
    [17]
    Manning R B. Further observations on Oratosquilla, with accounts of two new genera and nine new species (Crustacea: stomatopoda: squillidae)[J]. Smithsonian Contributions to Zoology, 1978, 272: 1−44.
    [18]
    Moosa K M. Marine biodiversity of the South China Sea: a checklist of stomatopod Crustacea[J]. The Raffles Bulletin of Zoology, 2000(S8): 405−457.
    [19]
    Martin J W, Davis G E. An Updated Classification of the recent Crustacea[M]. Los Angeles, Calif: Natural History Museum of Los Angeles County Los Angeles, 2001.
    [20]
    Ahyong S T. Phylogenetic analysis of the Squilloidea (Crustacea: Stomatopoda)[J]. Invertebrate Systematics, 2005, 19(3): 189−208. doi: 10.1071/IS04037
    [21]
    Kodama K, Yamakawa T, Shimizu T, et al. Age estimation of the wild population of Japanese mantis shrimp Oratosquilla oratoria (Crustacea: stomatopoda) in Tokyo Bay, Japan, using lipofuscin as an age marker[J]. Fisheries Science, 2005, 71(1): 141−150. doi: 10.1111/j.1444-2906.2005.00941.x
    [22]
    Ahyong S T. Phylogenetic analysis of the Stomatopoda (Malacostraca)[J]. Journal of Crustacean Biology, 1997, 17(4): 695−715. doi: 10.1163/193724097X00134
    [23]
    Audo D, Kawai T, Letenneur C, et al. Crayfishes from the Jehol biota[J]. Geodiversitas, 2023, 45(24): 689−719.
    [24]
    宋晓阳. 口虾蛄池塘育苗及立体养殖技术[J]. 中国水产, 2023(3): 77−78.

    Song Xiaoyang. Pond seed production and integrated aquaculture techniques for Oratosquilla oratoria[J]. China Fisheries, 2023(3): 77−78.
    [25]
    de Haan W. Crustacea. Fauna japonica, sive, Descriptio animalium, quae in itinere per Japoniam, jussu et auspiciis, superiorum, qui summum in India Batava imperium tenent, suscepto, annis 1823−1830[M]. Lugduni Batavorum: Apud Auctorem, 1833−1850.
    [26]
    Schram F R. Checklist of marine biota of China Seas[J]. Journal of Crustacean Biology, 2010, 30(2): 339−339. doi: 10.1651/09-3228.1
    [27]
    Aljanabi S M, Martinez I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques[J]. Nucleic Acids Research, 1997, 25(22): 4692−4693. doi: 10.1093/nar/25.22.4692
    [28]
    Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads[J]. EMBnet Journal, 2011, 17(1): 10−12. doi: 10.14806/ej.17.1.200
    [29]
    Jin Jianjun, Yu Wenbin, Yang Junbo, et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes[J]. Genome Biology, 2020, 21(1): 241. doi: 10.1186/s13059-020-02154-5
    [30]
    Bernt M, Donath A, Jühling F, et al. MITOS: improved de novo metazoan mitochondrial genome annotation[J]. Molecular Phylogenetics and Evolution, 2013, 69(2): 313−319. doi: 10.1016/j.ympev.2012.08.023
    [31]
    Koga C, Rouse G W. Mitogenomics and the phylogeny of mantis shrimps (Crustacea: Stomatopoda)[J]. Diversity, 2021, 13(12): 647. doi: 10.3390/d13120647
    [32]
    Xia Xuhua. DAMBE7: new and improved tools for data analysis in molecular biology and evolution[J]. Molecular Biology and Evolution, 2018, 35(6): 1550−1552. doi: 10.1093/molbev/msy073
    [33]
    Hassanin A, Léger N, Deutsch J. Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of Metazoa, and consequences for phylogenetic inferences[J]. Systematic Biology, 2005, 54(2): 277−298. doi: 10.1080/10635150590947843
    [34]
    Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6): 1547−1549. doi: 10.1093/molbev/msy096
    [35]
    Rozas J, Ferrer-Mata A, Sánchez-Delbarrio J C, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets[J]. Molecular Biology and Evolution, 2017, 34(12): 3299−3302. doi: 10.1093/molbev/msx248
    [36]
    Zhang Dong, Gao Fangluan, Jakovlić I, et al. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies[J]. Molecular Ecology Resources, 2020, 20(1): 348−355. doi: 10.1111/1755-0998.13096
    [37]
    Xiang Chuanyu, Gao Fangluan, Jakovlić I, et al. Using PhyloSuite for molecular phylogeny and tree-based analyses[J]. iMeta, 2023, 2(1): e87. doi: 10.1002/imt2.87
    [38]
    Katoh K, Standley D M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability[J]. Molecular Biology and Evolution, 2013, 30(4): 772−780. doi: 10.1093/molbev/mst010
    [39]
    Ranwez V, Douzery E J P, Cambon C, et al. MACSE v2: toolkit for the alignment of coding sequences accounting for frameshifts and stop codons[J]. Molecular Biology and Evolution, 2018, 35(10): 2582−2584. doi: 10.1093/molbev/msy159
    [40]
    Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments[J]. Systematic Biology, 2007, 56(4): 564−577. doi: 10.1080/10635150701472164
    [41]
    Kalyaanamoorthy S, Minh B Q, Wong T K F, et al. ModelFinder: fast model selection for accurate phylogenetic estimates[J]. Nature Methods, 2017, 14(6): 587−589. doi: 10.1038/nmeth.4285
    [42]
    Ronquist F, Teslenko M, Van Der Mark P, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space[J]. Systematic Biology, 2012, 61(3): 539−542. doi: 10.1093/sysbio/sys029
    [43]
    Nguyen L T, Schmidt H A, Von Haeseler A, et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies[J]. Molecular Biology and Evolution, 2015, 32(1): 268−274. doi: 10.1093/molbev/msu300
    [44]
    Guindon S, Dufayard J F, Lefort V, et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0[J]. Systematic Biology, 2010, 59(3): 307−321. doi: 10.1093/sysbio/syq010
    [45]
    Xie Jianmin, Chen Yuerong, Cai Guanjing, et al. Tree visualization by one table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees[J]. Nucleic Acids Research, 2023, 51(W1): W587−W592. doi: 10.1093/nar/gkad359
    [46]
    Bouckaert R, Vaughan T G, Barido-Sottani J, et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis[J]. PLoS Computational Biology, 2019, 15(4): e1006650. doi: 10.1371/journal.pcbi.1006650
    [47]
    Rambaut A, Drummond A J, Xie Dong, et al. Posterior summarization in Bayesian phylogenetics using Tracer 1.7[J]. Systematic Biology, 2018, 67(5): 901−904. doi: 10.1093/sysbio/syy032
    [48]
    Lowe T M, Chan P P. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes[J]. Nucleic Acids Research, 2016, 44(W1): W54−W57. doi: 10.1093/nar/gkw413
    [49]
    Chan P P, Lowe T M. tRNAscan-SE: searching for tRNA genes in genomic sequences[J]. Methods in Molecular Biology, 2019, 1962: 1−14.
    [50]
    Kerpedjiev P, Hammer S, Hofacker I L. Forna (force-directed RNA): simple and effective online RNA secondary structure diagrams[J]. Bioinformatics, 2015, 31(20): 3377−3379. doi: 10.1093/bioinformatics/btv372
    [51]
    Liu Yuan, Cui Zhaoxia. The complete mitochondrial genome of the mantid shrimp Oratosquilla oratoria (Crustacea: malacostraca: stomatopoda): novel non-coding regions features and phylogenetic implications of the Stomatopoda[J]. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2010, 5(3): 190−198. doi: 10.1016/j.cbd.2010.04.001
    [52]
    Boore J L, Lavrov D V, Brown W M. Gene translocation links insects and crustaceans[J]. Nature, 1998, 392(6677): 667−668. doi: 10.1038/33577
    [53]
    Kilpert F, Podsiadlowski L. The complete mitochondrial genome of the common sea slater, Ligia oceanica (Crustacea, Isopoda) bears a novel gene order and unusual control region features[J]. BMC Genomics, 2006, 7: 241. doi: 10.1186/1471-2164-7-241
    [54]
    Kilpert F, Held C, Podsiadlowski L. Multiple rearrangements in mitochondrial genomes of Isopoda and phylogenetic implications[J]. Molecular Phylogenetics and Evolution, 2012, 64(1): 106−117. doi: 10.1016/j.ympev.2012.03.013
    [55]
    Wang Zhengfei, Zheng Yuqiang, Zhao Xinyue, et al. Molecular phylogeny and evolution of the Tuerkayana (Decapoda: Brachyura: Gecarcinidae) genus based on whole mitochondrial genome sequences[J]. Biology, 2023, 12(7): 974. doi: 10.3390/biology12070974
    [56]
    Sun Hongying, Zhou Kaiya, Song Daxiang. Mitochondrial genome of the Chinese mitten crab Eriocheir japonica sinenesis (Brachyura: Thoracotremata: Grapsoidea) reveals a novel gene order and two target regions of gene rearrangements[J]. Gene, 2005, 349: 207−217. doi: 10.1016/j.gene.2004.12.036
    [57]
    李玥. 亚洲特有种卵圆扁蝼蛄虾鳃虱 (等足目: 寄生下目: 鳃虱科) 全线粒体基因组序列的分析研究[D]. 太原: 山西师范大学, 2017.

    Li Yue. The study of the complete mitochondrial genome of the Asian endemic species Gyge ovalis (Shiino, 1939) (Isopoda: Epicaridea: Bopyridae)[D]. Taiyuan: Shanxi Normal University, 2017.
    [58]
    张瑞. 基于线粒体基因组数据探究潮虫亚目(甲壳动物亚门: 等足目)的系统演化关系[D]. 太原: 山西师范大学, 2020.

    Zhang Rui. Phylogeny of subfamily Oniscidea (Crustacea: Isopoda) based on the mitochondrial genome[D]. Taiyuan: Shanxi Normal University, 2020.
    [59]
    Zhang Daizhen, Sun Xiaoli, Chen Lianfu, et al. The chromosome-level genome provides insights into the adaptive evolution of the visual system in Oratosquilla oratoria[J]. BMC Biology, 2025, 23(1): 38. doi: 10.1186/s12915-025-02146-6
    [60]
    Xu Tao, Bravo H, Van Der Meij S E T. Phylomitogenomics elucidates the evolution of symbiosis in Thoracotremata (Decapoda: Cryptochiridae, Pinnotheridae, Varunidae)[J]. PeerJ, 2023, 11: e16217. doi: 10.7717/peerj.16217
    [61]
    Wu Ruiwen, Guo Rongxiu, Xi Qianqian, et al. Phylogenetic position of Bopyroides hippolytes, with comments on the rearrangement of the mitochondrial genome in isopods (Isopoda: Epicaridea: Bopyridae)[J]. BMC Genomics, 2022, 23(1): 253. doi: 10.1186/s12864-022-08513-9
    [62]
    Shen Xin, Tian Mei, Yan Binlun, et al. Phylomitogenomics of Malacostraca (Arthropoda: Crustacea)[J]. Acta Oceanologica Sinica, 2015, 34(2): 84−92. doi: 10.1007/s13131-015-0583-1
    [63]
    Zhang Yazhou, Bi Yuanxin, Feng Meiping. The complete mitochondrial genome of Lophosquillia costata (Malacostraca: Stomatopoda) from China and phylogeny of stomatopods[J]. Mitochondrial DNA Part B, 2020, 5(3): 2495−2497. doi: 10.1080/23802359.2020.1780170
    [64]
    Kang H E, Kim J N, Yoon T H, et al. Total mitochondrial genome of mantis shrimp, Squilloides leptosquilla (Brooks, 1886) (Crustacea: Stomatopoda: Squillidae) in Korean waters[J]. Mitochondrial DNA Part A, 2015, 27(4): 2842−2843.
    [65]
    Ahyong S T, Jarman S N. Stomatopod interrelationships: preliminary results based on analysis of three molecular loci[J]. Arthropod Systematics & Phylogeny, 2009, 67(1): 91−98.
    [66]
    Tang R W K, Yau C, Ng W C. Identification of stomatopod larvae (Crustacea: Stomatopoda) from Hong Kong waters using DNA barcodes[J]. Molecular Ecology Resources, 2010, 10(3): 439−448. doi: 10.1111/j.1755-0998.2009.02794.x
    [67]
    Harling C. Reexamination of eye design in the classification of stomatopod crustaceans[J]. Journal of Crustacean Biology, 2000, 20(1): 172−185. doi: 10.1163/20021975-99990026
    [68]
    Ahyong S T, Harling C. The phylogeny of the stomatopod Crustacea[J]. Australian Journal of Zoology, 2000, 48(6): 607−642. doi: 10.1071/ZO00042
    [69]
    Porter M L, Zhang Yunfei, Desai S, et al. Evolution of anatomical and physiological specialization in the compound eyes of stomatopod crustaceans[J]. Journal of Experimental Biology, 2010, 213(20): 3473−3486. doi: 10.1242/jeb.046508
    [70]
    Barber P H, Erdmann M V. Molecular systematics of the Gonodactylidae (Stomatopoda) using mitochondrial cytochrome oxidase C (subunit 1) DNA sequence data[J]. Journal of Crustacean Biology, 2000, 20(5): 20−36. doi: 10.1163/1937240X-90000004
    [71]
    Cheng Jiao, Chan T Y, Zhang Nan, et al. Mitochondrial phylogenomics reveals insights into taxonomy and evolution of Penaeoidea (Crustacea: Decapoda)[J]. Zoologica Scripta, 2018, 47(5): 582−594. doi: 10.1111/zsc.12298
    [72]
    Bracken H D, De Grave S, Felder D L, et al. Phylogeny of the infraorder Caridea based on mitochondrial and nuclear genes (Crustacea: Decapoda)[M]//Martin J W, Crandall K A, Felder D L. Decapod Crustacean Phylogenetics. Boca Raton: CRC Press, 2009, 18: 274-298.
    [73]
    张阳. 口虾蛄不同地理群体线粒体DNA控制区和转录组变异研究[D]. 舟山: 浙江海洋大学, 2018.

    Zhang Yang. Genetic variation analysis of different population mantis shrimp Oratosquilla oratoria based on mitochondrial DNA control region and transcriptome[D]. Zhoushan: Zhejiang Ocean University, 2018.
    [74]
    Jakovlić I, Zou Hong, Chen Jianhai, et al. Slow crabs - fast genomes: locomotory capacity predicts skew magnitude in crustacean mitogenomes[J]. Molecular Ecology, 2021, 30(21): 5488−5502. doi: 10.1111/mec.16138
    [75]
    Hof C H J. Fossil stomatopods (Crustacea: Malacostraca) and their phylogenetic impact[J]. Journal of Natural History, 1998, 32(10/11): 1567−1576.
    [76]
    Schram F R. Upper Pennsylvanian arthropods from black shales of Iowa and Nebraska[J]. Journal of Paleontology, 1984, 58(1): 197−209.
    [77]
    宋海军, 童金南. 二叠纪-三叠纪之交生物大灭绝与残存[J]. 地球科学, 2016, 41(6): 901−918.

    Song Haijun, Tong Jinnan. Mass extinction and survival during the Permian-Triassic Crisis[J]. Earth Science, 2016, 41(6): 901−918.
    [78]
    Guo Zhen, Flannery-Sutherland J T, Benton M J, et al. Bayesian analyses indicate bivalves did not drive the downfall of brachiopods following the Permian-Triassic mass extinction[J]. Nature Communications, 2023, 14(1): 5566. doi: 10.1038/s41467-023-41358-8
    [79]
    Benton M J, Wu Feixiang. Triassic revolution[J]. Frontiers in Earth Science, 2022, 10: 899541. doi: 10.3389/feart.2022.899541
    [80]
    Van Valen L M. A resetting of Phanerozoic community evolution[J]. Nature, 1984, 307(5946): 50−52. doi: 10.1038/307050a0
    [81]
    张武文. 地学概论[M]. 北京: 中国林业出版社, 2000.

    Zhang Wuwen. Introduction to Geological Sciences[M]. Beijing: China Forestry Publishing House, 2000.
    [82]
    列昂捷夫O K, 朱大奎. 关于中生代—新生代世界洋面的变化[J]. 海洋通报, 1974(1): 70−77.

    Leontev O K, Zhu Dakui. On the changes of the world ocean surface during the Mesozoic-Cenozoic[J]. Marine Science Bulletin, 1974(1): 70−77.
    [83]
    姜建军. 古生代、中生代海平面变化研究状况[J]. 海洋学报, 1991, 13(5): 715−720.

    Jiang Jianjun. Research status of sea-level changes during the Paleozoic and Mesozoic Eras[J]. HaiYang Xuebao, 1991, 13(5): 715−720.
    [84]
    李枢强, 赵喆, 侯仲娥. 特提斯海变迁对全球动物分布的影响[J]. 河北大学学报(自然科学版), 2021, 41(5): 551−564.

    Li Shuqiang, Zhao Zhe, Hou Zhong'e. Tethyan changes shaped global animal distribution[J]. Journal of Hebei University (Natural Science Edition), 2021, 41(5): 551−564.
    [85]
    Dames W. Ueber einige crustaceen aus den kreideablagerungen des libanon[J]. Zeitschrift der Deutschen Geologischen Gesellschaft, 1886, 38(3): 551−575.
    [86]
    Van Der Wal C, Ahyong S T, Adams M W D, et al. Total-evidence phylogenetic analysis resolves the evolutionary timescale of mantis shrimps (Stomatopoda) and provides insights into their molecular and morphological evolutionary rates[J]. Molecular Phylogenetics and Evolution, 2025, 207: 108346. doi: 10.1016/j.ympev.2025.108346
    [87]
    Sun Yuman, Liu Wanting, Chen Jian, et al. Sequence comparison of the mitochondrial genomes of five caridean shrimps of the infraorder Caridea: phylogenetic implications and divergence time estimation[J]. BMC Genomics, 2024, 25(1): 968. doi: 10.1186/s12864-024-10775-4
    [88]
    鹿博. 西太平洋和印度洋海底热液口十足目系统发育及其演化关系的研究[D]. 杭州: 浙江大学, 2013.

    Lu Bo. Phylogeny and evolution of hydrothermal vent decapods in West Pacific and Indian Oceans[D]. Hangzhou: Zhejiang University, 2013.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article views (112) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return