| Citation: | Zhang Qianyu,Ma Jiale,Ye Yingying, et al. Complete mitochondrial genome sequencing of Anchisquilla fasciata and phylogenetic analysis of the Squillidae[J]. Haiyang Xuebao,2025, 47(9):129–144 doi: 10.12284/hyxb2025110 |
| [1] |
王春琳, 徐善良, 梅文骧, 等. 口虾蛄的生物学基本特征[J]. 浙江水产学院学报, 1996, 17(1): 60−62.
Wang Chunlin, Xu Shanliang, Mei Wenxiang, et al. A biological basic character of the Oratosquilla oratoria[J]. Journal of Zhejiang College of Fisheries, 1996, 17(1): 60−62.
|
| [2] |
魏崇德. 浙江动物志·甲壳类[M]. 杭州: 浙江科学技术出版社, 1991.
Wei Chongde. Fauna of Zhejiang: Crustacea[M]. Hangzhou: Zhejiang Science and Technology Press, 1991.
|
| [3] |
任中杰. 全长转录组揭示口虾蛄复眼识别圆偏振光的分子特征[D]. 烟台: 烟台大学, 2024.
Ren Zhongjie. Full-length transcriptome reveals the molecular characteristic of the compound eye of Oratosquilla oratoria in recognition of circularly polarization light[D]. Yantai: Yantai University, 2024.
|
| [4] |
杜欣蔚. 中国东部近海口虾蛄群体遗传多样性研究[D]. 舟山: 浙江海洋大学, 2016.
Du Xinwei. Genetic population genetic variation of Oratosquilla oratoria in eastern coastal waters of China[D]. Zhoushan: Zhejiang Ocean University, 2016.
|
| [5] |
隋宥珍, 刘连为, 徐开达, 等. 基于线粒体Cytb基因的口虾蛄种群遗传结构研究[J]. 大连海洋大学学报, 2019, 34(3): 355−361.
Sui Youzhen, Liu Lianwei, Xu Kaida, et al. Population genetic structure of mantis shrimp Oratosquilla oratoria based on the partial mitochondrial DNA cytochrome b gene[J]. Journal of Dalian Ocean University, 2019, 34(3): 355−361.
|
| [6] |
沙忠利, 王永良, 程娇. 基于线粒体COI序列的DNA条形码在中国海口足类物种鉴定中的应用分析[J]. 中国水产科学, 2018, 25(4): 858−866. doi: 10.3724/SP.J.1118.2018.17338
Sha Zhongli, Wang Yongliang, Cheng Jiao. Application of mitochondrial COI-based DNA barcoding for the identification of stomatopod species (Crustacea, Stomatopoda) in the China seas[J]. Journal of Fishery Sciences of China, 2018, 25(4): 858−866. doi: 10.3724/SP.J.1118.2018.17338
|
| [7] |
Hamano T, Matsuura S. Egg laying and egg mass nursing behaviour in the Japanese mantis shrimp[J]. Nippon Suisan Gakkaishi, 1984, 50(12): 1969−1973. doi: 10.2331/suisan.50.1969
|
| [8] |
Hamano T, Matsuura S. Egg size, duration of incubation, and larval development of the Japanese mantis shrimp in the laboratory[J]. Nippon Suisan Gakkaishi, 1987, 53(1): 23−39. doi: 10.2331/suisan.53.23
|
| [9] |
Hamano T. Mating behavior of Oratosquilla oratoria (De Haan, 1844) (Crustacea: stomatopoda)[J]. Journal of Crustacean Biology, 1988, 8(2): 239−244. doi: 10.2307/1548315
|
| [10] |
Hamano T, Matsuura S. Food habits of the Japanese mantis shrimp in the benthic community of Hakata Bay[J]. Nippon Suisan Gakkaishi, 1986, 52(5): 787−794. doi: 10.2331/suisan.52.787
|
| [11] |
Hamano T. Growth of the stomatopod crustacean Oratosquilla oratoria in Hakata Bay[J]. Nippon Suisan Gakkaishi, 1990, 56(9): 1529. doi: 10.2331/suisan.56.1529
|
| [12] |
Manning R B. Stomatopoda from the collection of his majesty the emperor of Japan[J]. Crustaceana, 1965, 9(3): 249−262. doi: 10.1163/156854065X00037
|
| [13] |
Manning R B. A revision of the family Squillidae (Crustacea, Stomatopoda), with the description of eight new genera[J]. Bulletin of marine Science, 1968, 18(1): 105−142.
|
| [14] |
Manning R B. Stomatopod Crustacea from Madagascar[J]. Proceedings of the United States National Museum, 1968, 124: 1−6.
|
| [15] |
Manning R B. Stomatopod crustacea of vietnam: the legacy of raoul Serène[J]. Crustacean Research, 1995, 1995(4): 1−339.
|
| [16] |
Manning R B. Keys to the species of Oratosquilla (Crustacea: stomatopoda), with descriptions of two new species[J]. Smithsonian Contributions to Zoology, 1971, 71: 1−16.
|
| [17] |
Manning R B. Further observations on Oratosquilla, with accounts of two new genera and nine new species (Crustacea: stomatopoda: squillidae)[J]. Smithsonian Contributions to Zoology, 1978, 272: 1−44.
|
| [18] |
Moosa K M. Marine biodiversity of the South China Sea: a checklist of stomatopod Crustacea[J]. The Raffles Bulletin of Zoology, 2000(S8): 405−457.
|
| [19] |
Martin J W, Davis G E. An Updated Classification of the recent Crustacea[M]. Los Angeles, Calif: Natural History Museum of Los Angeles County Los Angeles, 2001.
|
| [20] |
Ahyong S T. Phylogenetic analysis of the Squilloidea (Crustacea: Stomatopoda)[J]. Invertebrate Systematics, 2005, 19(3): 189−208. doi: 10.1071/IS04037
|
| [21] |
Kodama K, Yamakawa T, Shimizu T, et al. Age estimation of the wild population of Japanese mantis shrimp Oratosquilla oratoria (Crustacea: stomatopoda) in Tokyo Bay, Japan, using lipofuscin as an age marker[J]. Fisheries Science, 2005, 71(1): 141−150. doi: 10.1111/j.1444-2906.2005.00941.x
|
| [22] |
Ahyong S T. Phylogenetic analysis of the Stomatopoda (Malacostraca)[J]. Journal of Crustacean Biology, 1997, 17(4): 695−715. doi: 10.1163/193724097X00134
|
| [23] |
Audo D, Kawai T, Letenneur C, et al. Crayfishes from the Jehol biota[J]. Geodiversitas, 2023, 45(24): 689−719.
|
| [24] |
宋晓阳. 口虾蛄池塘育苗及立体养殖技术[J]. 中国水产, 2023(3): 77−78.
Song Xiaoyang. Pond seed production and integrated aquaculture techniques for Oratosquilla oratoria[J]. China Fisheries, 2023(3): 77−78.
|
| [25] |
de Haan W. Crustacea. Fauna japonica, sive, Descriptio animalium, quae in itinere per Japoniam, jussu et auspiciis, superiorum, qui summum in India Batava imperium tenent, suscepto, annis 1823−1830[M]. Lugduni Batavorum: Apud Auctorem, 1833−1850.
|
| [26] |
Schram F R. Checklist of marine biota of China Seas[J]. Journal of Crustacean Biology, 2010, 30(2): 339−339. doi: 10.1651/09-3228.1
|
| [27] |
Aljanabi S M, Martinez I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques[J]. Nucleic Acids Research, 1997, 25(22): 4692−4693. doi: 10.1093/nar/25.22.4692
|
| [28] |
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads[J]. EMBnet Journal, 2011, 17(1): 10−12. doi: 10.14806/ej.17.1.200
|
| [29] |
Jin Jianjun, Yu Wenbin, Yang Junbo, et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes[J]. Genome Biology, 2020, 21(1): 241. doi: 10.1186/s13059-020-02154-5
|
| [30] |
Bernt M, Donath A, Jühling F, et al. MITOS: improved de novo metazoan mitochondrial genome annotation[J]. Molecular Phylogenetics and Evolution, 2013, 69(2): 313−319. doi: 10.1016/j.ympev.2012.08.023
|
| [31] |
Koga C, Rouse G W. Mitogenomics and the phylogeny of mantis shrimps (Crustacea: Stomatopoda)[J]. Diversity, 2021, 13(12): 647. doi: 10.3390/d13120647
|
| [32] |
Xia Xuhua. DAMBE7: new and improved tools for data analysis in molecular biology and evolution[J]. Molecular Biology and Evolution, 2018, 35(6): 1550−1552. doi: 10.1093/molbev/msy073
|
| [33] |
Hassanin A, Léger N, Deutsch J. Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of Metazoa, and consequences for phylogenetic inferences[J]. Systematic Biology, 2005, 54(2): 277−298. doi: 10.1080/10635150590947843
|
| [34] |
Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6): 1547−1549. doi: 10.1093/molbev/msy096
|
| [35] |
Rozas J, Ferrer-Mata A, Sánchez-Delbarrio J C, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets[J]. Molecular Biology and Evolution, 2017, 34(12): 3299−3302. doi: 10.1093/molbev/msx248
|
| [36] |
Zhang Dong, Gao Fangluan, Jakovlić I, et al. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies[J]. Molecular Ecology Resources, 2020, 20(1): 348−355. doi: 10.1111/1755-0998.13096
|
| [37] |
Xiang Chuanyu, Gao Fangluan, Jakovlić I, et al. Using PhyloSuite for molecular phylogeny and tree-based analyses[J]. iMeta, 2023, 2(1): e87. doi: 10.1002/imt2.87
|
| [38] |
Katoh K, Standley D M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability[J]. Molecular Biology and Evolution, 2013, 30(4): 772−780. doi: 10.1093/molbev/mst010
|
| [39] |
Ranwez V, Douzery E J P, Cambon C, et al. MACSE v2: toolkit for the alignment of coding sequences accounting for frameshifts and stop codons[J]. Molecular Biology and Evolution, 2018, 35(10): 2582−2584. doi: 10.1093/molbev/msy159
|
| [40] |
Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments[J]. Systematic Biology, 2007, 56(4): 564−577. doi: 10.1080/10635150701472164
|
| [41] |
Kalyaanamoorthy S, Minh B Q, Wong T K F, et al. ModelFinder: fast model selection for accurate phylogenetic estimates[J]. Nature Methods, 2017, 14(6): 587−589. doi: 10.1038/nmeth.4285
|
| [42] |
Ronquist F, Teslenko M, Van Der Mark P, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space[J]. Systematic Biology, 2012, 61(3): 539−542. doi: 10.1093/sysbio/sys029
|
| [43] |
Nguyen L T, Schmidt H A, Von Haeseler A, et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies[J]. Molecular Biology and Evolution, 2015, 32(1): 268−274. doi: 10.1093/molbev/msu300
|
| [44] |
Guindon S, Dufayard J F, Lefort V, et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0[J]. Systematic Biology, 2010, 59(3): 307−321. doi: 10.1093/sysbio/syq010
|
| [45] |
Xie Jianmin, Chen Yuerong, Cai Guanjing, et al. Tree visualization by one table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees[J]. Nucleic Acids Research, 2023, 51(W1): W587−W592. doi: 10.1093/nar/gkad359
|
| [46] |
Bouckaert R, Vaughan T G, Barido-Sottani J, et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis[J]. PLoS Computational Biology, 2019, 15(4): e1006650. doi: 10.1371/journal.pcbi.1006650
|
| [47] |
Rambaut A, Drummond A J, Xie Dong, et al. Posterior summarization in Bayesian phylogenetics using Tracer 1.7[J]. Systematic Biology, 2018, 67(5): 901−904. doi: 10.1093/sysbio/syy032
|
| [48] |
Lowe T M, Chan P P. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes[J]. Nucleic Acids Research, 2016, 44(W1): W54−W57. doi: 10.1093/nar/gkw413
|
| [49] |
Chan P P, Lowe T M. tRNAscan-SE: searching for tRNA genes in genomic sequences[J]. Methods in Molecular Biology, 2019, 1962: 1−14.
|
| [50] |
Kerpedjiev P, Hammer S, Hofacker I L. Forna (force-directed RNA): simple and effective online RNA secondary structure diagrams[J]. Bioinformatics, 2015, 31(20): 3377−3379. doi: 10.1093/bioinformatics/btv372
|
| [51] |
Liu Yuan, Cui Zhaoxia. The complete mitochondrial genome of the mantid shrimp Oratosquilla oratoria (Crustacea: malacostraca: stomatopoda): novel non-coding regions features and phylogenetic implications of the Stomatopoda[J]. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2010, 5(3): 190−198. doi: 10.1016/j.cbd.2010.04.001
|
| [52] |
Boore J L, Lavrov D V, Brown W M. Gene translocation links insects and crustaceans[J]. Nature, 1998, 392(6677): 667−668. doi: 10.1038/33577
|
| [53] |
Kilpert F, Podsiadlowski L. The complete mitochondrial genome of the common sea slater, Ligia oceanica (Crustacea, Isopoda) bears a novel gene order and unusual control region features[J]. BMC Genomics, 2006, 7: 241. doi: 10.1186/1471-2164-7-241
|
| [54] |
Kilpert F, Held C, Podsiadlowski L. Multiple rearrangements in mitochondrial genomes of Isopoda and phylogenetic implications[J]. Molecular Phylogenetics and Evolution, 2012, 64(1): 106−117. doi: 10.1016/j.ympev.2012.03.013
|
| [55] |
Wang Zhengfei, Zheng Yuqiang, Zhao Xinyue, et al. Molecular phylogeny and evolution of the Tuerkayana (Decapoda: Brachyura: Gecarcinidae) genus based on whole mitochondrial genome sequences[J]. Biology, 2023, 12(7): 974. doi: 10.3390/biology12070974
|
| [56] |
Sun Hongying, Zhou Kaiya, Song Daxiang. Mitochondrial genome of the Chinese mitten crab Eriocheir japonica sinenesis (Brachyura: Thoracotremata: Grapsoidea) reveals a novel gene order and two target regions of gene rearrangements[J]. Gene, 2005, 349: 207−217. doi: 10.1016/j.gene.2004.12.036
|
| [57] |
李玥. 亚洲特有种卵圆扁蝼蛄虾鳃虱 (等足目: 寄生下目: 鳃虱科) 全线粒体基因组序列的分析研究[D]. 太原: 山西师范大学, 2017.
Li Yue. The study of the complete mitochondrial genome of the Asian endemic species Gyge ovalis (Shiino, 1939) (Isopoda: Epicaridea: Bopyridae)[D]. Taiyuan: Shanxi Normal University, 2017.
|
| [58] |
张瑞. 基于线粒体基因组数据探究潮虫亚目(甲壳动物亚门: 等足目)的系统演化关系[D]. 太原: 山西师范大学, 2020.
Zhang Rui. Phylogeny of subfamily Oniscidea (Crustacea: Isopoda) based on the mitochondrial genome[D]. Taiyuan: Shanxi Normal University, 2020.
|
| [59] |
Zhang Daizhen, Sun Xiaoli, Chen Lianfu, et al. The chromosome-level genome provides insights into the adaptive evolution of the visual system in Oratosquilla oratoria[J]. BMC Biology, 2025, 23(1): 38. doi: 10.1186/s12915-025-02146-6
|
| [60] |
Xu Tao, Bravo H, Van Der Meij S E T. Phylomitogenomics elucidates the evolution of symbiosis in Thoracotremata (Decapoda: Cryptochiridae, Pinnotheridae, Varunidae)[J]. PeerJ, 2023, 11: e16217. doi: 10.7717/peerj.16217
|
| [61] |
Wu Ruiwen, Guo Rongxiu, Xi Qianqian, et al. Phylogenetic position of Bopyroides hippolytes, with comments on the rearrangement of the mitochondrial genome in isopods (Isopoda: Epicaridea: Bopyridae)[J]. BMC Genomics, 2022, 23(1): 253. doi: 10.1186/s12864-022-08513-9
|
| [62] |
Shen Xin, Tian Mei, Yan Binlun, et al. Phylomitogenomics of Malacostraca (Arthropoda: Crustacea)[J]. Acta Oceanologica Sinica, 2015, 34(2): 84−92. doi: 10.1007/s13131-015-0583-1
|
| [63] |
Zhang Yazhou, Bi Yuanxin, Feng Meiping. The complete mitochondrial genome of Lophosquillia costata (Malacostraca: Stomatopoda) from China and phylogeny of stomatopods[J]. Mitochondrial DNA Part B, 2020, 5(3): 2495−2497. doi: 10.1080/23802359.2020.1780170
|
| [64] |
Kang H E, Kim J N, Yoon T H, et al. Total mitochondrial genome of mantis shrimp, Squilloides leptosquilla (Brooks, 1886) (Crustacea: Stomatopoda: Squillidae) in Korean waters[J]. Mitochondrial DNA Part A, 2015, 27(4): 2842−2843.
|
| [65] |
Ahyong S T, Jarman S N. Stomatopod interrelationships: preliminary results based on analysis of three molecular loci[J]. Arthropod Systematics & Phylogeny, 2009, 67(1): 91−98.
|
| [66] |
Tang R W K, Yau C, Ng W C. Identification of stomatopod larvae (Crustacea: Stomatopoda) from Hong Kong waters using DNA barcodes[J]. Molecular Ecology Resources, 2010, 10(3): 439−448. doi: 10.1111/j.1755-0998.2009.02794.x
|
| [67] |
Harling C. Reexamination of eye design in the classification of stomatopod crustaceans[J]. Journal of Crustacean Biology, 2000, 20(1): 172−185. doi: 10.1163/20021975-99990026
|
| [68] |
Ahyong S T, Harling C. The phylogeny of the stomatopod Crustacea[J]. Australian Journal of Zoology, 2000, 48(6): 607−642. doi: 10.1071/ZO00042
|
| [69] |
Porter M L, Zhang Yunfei, Desai S, et al. Evolution of anatomical and physiological specialization in the compound eyes of stomatopod crustaceans[J]. Journal of Experimental Biology, 2010, 213(20): 3473−3486. doi: 10.1242/jeb.046508
|
| [70] |
Barber P H, Erdmann M V. Molecular systematics of the Gonodactylidae (Stomatopoda) using mitochondrial cytochrome oxidase C (subunit 1) DNA sequence data[J]. Journal of Crustacean Biology, 2000, 20(5): 20−36. doi: 10.1163/1937240X-90000004
|
| [71] |
Cheng Jiao, Chan T Y, Zhang Nan, et al. Mitochondrial phylogenomics reveals insights into taxonomy and evolution of Penaeoidea (Crustacea: Decapoda)[J]. Zoologica Scripta, 2018, 47(5): 582−594. doi: 10.1111/zsc.12298
|
| [72] |
Bracken H D, De Grave S, Felder D L, et al. Phylogeny of the infraorder Caridea based on mitochondrial and nuclear genes (Crustacea: Decapoda)[M]//Martin J W, Crandall K A, Felder D L. Decapod Crustacean Phylogenetics. Boca Raton: CRC Press, 2009, 18: 274-298.
|
| [73] |
张阳. 口虾蛄不同地理群体线粒体DNA控制区和转录组变异研究[D]. 舟山: 浙江海洋大学, 2018.
Zhang Yang. Genetic variation analysis of different population mantis shrimp Oratosquilla oratoria based on mitochondrial DNA control region and transcriptome[D]. Zhoushan: Zhejiang Ocean University, 2018.
|
| [74] |
Jakovlić I, Zou Hong, Chen Jianhai, et al. Slow crabs - fast genomes: locomotory capacity predicts skew magnitude in crustacean mitogenomes[J]. Molecular Ecology, 2021, 30(21): 5488−5502. doi: 10.1111/mec.16138
|
| [75] |
Hof C H J. Fossil stomatopods (Crustacea: Malacostraca) and their phylogenetic impact[J]. Journal of Natural History, 1998, 32(10/11): 1567−1576.
|
| [76] |
Schram F R. Upper Pennsylvanian arthropods from black shales of Iowa and Nebraska[J]. Journal of Paleontology, 1984, 58(1): 197−209.
|
| [77] |
宋海军, 童金南. 二叠纪-三叠纪之交生物大灭绝与残存[J]. 地球科学, 2016, 41(6): 901−918.
Song Haijun, Tong Jinnan. Mass extinction and survival during the Permian-Triassic Crisis[J]. Earth Science, 2016, 41(6): 901−918.
|
| [78] |
Guo Zhen, Flannery-Sutherland J T, Benton M J, et al. Bayesian analyses indicate bivalves did not drive the downfall of brachiopods following the Permian-Triassic mass extinction[J]. Nature Communications, 2023, 14(1): 5566. doi: 10.1038/s41467-023-41358-8
|
| [79] |
Benton M J, Wu Feixiang. Triassic revolution[J]. Frontiers in Earth Science, 2022, 10: 899541. doi: 10.3389/feart.2022.899541
|
| [80] |
Van Valen L M. A resetting of Phanerozoic community evolution[J]. Nature, 1984, 307(5946): 50−52. doi: 10.1038/307050a0
|
| [81] |
张武文. 地学概论[M]. 北京: 中国林业出版社, 2000.
Zhang Wuwen. Introduction to Geological Sciences[M]. Beijing: China Forestry Publishing House, 2000.
|
| [82] |
列昂捷夫O K, 朱大奎. 关于中生代—新生代世界洋面的变化[J]. 海洋通报, 1974(1): 70−77.
Leontev O K, Zhu Dakui. On the changes of the world ocean surface during the Mesozoic-Cenozoic[J]. Marine Science Bulletin, 1974(1): 70−77.
|
| [83] |
姜建军. 古生代、中生代海平面变化研究状况[J]. 海洋学报, 1991, 13(5): 715−720.
Jiang Jianjun. Research status of sea-level changes during the Paleozoic and Mesozoic Eras[J]. HaiYang Xuebao, 1991, 13(5): 715−720.
|
| [84] |
李枢强, 赵喆, 侯仲娥. 特提斯海变迁对全球动物分布的影响[J]. 河北大学学报(自然科学版), 2021, 41(5): 551−564.
Li Shuqiang, Zhao Zhe, Hou Zhong'e. Tethyan changes shaped global animal distribution[J]. Journal of Hebei University (Natural Science Edition), 2021, 41(5): 551−564.
|
| [85] |
Dames W. Ueber einige crustaceen aus den kreideablagerungen des libanon[J]. Zeitschrift der Deutschen Geologischen Gesellschaft, 1886, 38(3): 551−575.
|
| [86] |
Van Der Wal C, Ahyong S T, Adams M W D, et al. Total-evidence phylogenetic analysis resolves the evolutionary timescale of mantis shrimps (Stomatopoda) and provides insights into their molecular and morphological evolutionary rates[J]. Molecular Phylogenetics and Evolution, 2025, 207: 108346. doi: 10.1016/j.ympev.2025.108346
|
| [87] |
Sun Yuman, Liu Wanting, Chen Jian, et al. Sequence comparison of the mitochondrial genomes of five caridean shrimps of the infraorder Caridea: phylogenetic implications and divergence time estimation[J]. BMC Genomics, 2024, 25(1): 968. doi: 10.1186/s12864-024-10775-4
|
| [88] |
鹿博. 西太平洋和印度洋海底热液口十足目系统发育及其演化关系的研究[D]. 杭州: 浙江大学, 2013.
Lu Bo. Phylogeny and evolution of hydrothermal vent decapods in West Pacific and Indian Oceans[D]. Hangzhou: Zhejiang University, 2013.
|