Citation: | Luo Tongqin,Ruan Zechao,Zhang Yan, et al. Toxicological study of polystyrene microplastics on the intestine of Sebastiscus marmoratus[J]. Haiyang Xuebao,2025, 47(9):1–14 doi: 10.12284/hyxb2025106 |
[1] |
Eerkes-Medrano D, Thompson R C, Aldridge D C. Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs[J]. Water Research, 2015, 75: 63−82. doi: 10.1016/j.watres.2015.02.012
|
[2] |
Jambeck J R, Geyer R, Wilcox C, et al. Plastic waste inputs from land into the ocean[J]. Science, 2015, 347(6223): 768−771. doi: 10.1126/science.1260352
|
[3] |
Bhat R A H, Sidiq M J, Altinok I. Impact of microplastics and nanoplastics on fish health and reproduction[J]. Aquaculture, 2024, 590: 741037. doi: 10.1016/j.aquaculture.2024.741037
|
[4] |
Suaria G, Avio C G, Mineo A, et al. The mediterranean plastic soup: synthetic polymers in mediterranean surface waters[J]. Scientific Reports, 2016, 6(1): 37551. doi: 10.1038/srep37551
|
[5] |
Cincinelli A, Scopetani C, Chelazzi D, et al. Microplastic in the surface waters of the ross sea (antarctica): occurrence, distribution and characterization by FTIR[J]. Chemosphere, 2017, 175: 391−400. doi: 10.1016/j.chemosphere.2017.02.024
|
[6] |
Jiang Yong, Yang Fan, Kazmi S S U H, et al. A review of microplastic pollution in seawater, sediments and organisms of the Chinese coastal and marginal seas[J]. Chemosphere, 2022, 286: 131677. doi: 10.1016/j.chemosphere.2021.131677
|
[7] |
杜蕴超. 环境因子影响下的聚苯乙烯微塑料对长牡蛎毒性效应研究[D]. 烟台: 中国科学院大学(中国科学院烟台海岸带研究所), 2023.
Du Yunchao. The influence of environmental factors on the toxicity of polystyrence microplastics to the pacific oysters Crassostrea gigas[D]. Yantai: University of Chinese Academy of Sciences (Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences), 2023.
|
[8] |
Hamed M, Soliman H A M, Said R E M, et al. Oxidative stress, antioxidant defense responses, and histopathology: biomarkers for monitoring exposure to pyrogallol in clarias gariepinus[J]. Journal of Environmental Management, 2024, 351: 119845. doi: 10.1016/j.jenvman.2023.119845
|
[9] |
Rangasamy B, Malafaia G, Maheswaran R. Evaluation of antioxidant response and Na +-K+-ATPase activity in zebrafish exposed to polyethylene microplastics: shedding light on a physiological adaptation[J]. Journal of Hazardous Materials, 2022, 426: 127789. doi: 10.1016/j.jhazmat.2021.127789
|
[10] |
Umamaheswari S, Priyadarshinee S, Kadirvelu K, et al. Polystyrene microplastics induce apoptosis via ROS-mediated p53 signaling pathway in zebrafish[J]. Chemico-Biological Interactions, 2021, 345: 109550. doi: 10.1016/j.cbi.2021.109550
|
[11] |
Shi Zhaoji, Yao Fucheng, Liu Ziqiang, et al. Microplastics predominantly affect gut microbiota by altering community structure rather than richness and diversity: a meta-analysis of aquatic animals[J]. Environmental Pollution, 2024, 360: 124639. doi: 10.1016/j.envpol.2024.124639
|
[12] |
Browne M A, Niven S J, Galloway T S, et al. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity[J]. Current Biology, 2013, 23(23): 2388−2392. doi: 10.1016/j.cub.2013.10.012
|
[13] |
Chen Qiqing, Gundlach M, Yang Shouye, et al. Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity[J]. Science of The Total Environment, 2017, 584−585: 1022−1031. doi: 10.1016/j.scitotenv.2017.01.156
|
[14] |
Pedersen A F, Meyer D N, Petriv A M V, et al. Nanoplastics impact the zebrafish (Danio rerio) transcriptome: associated developmental and neurobehavioral consequences[J]. Environmental Pollution, 2020, 266: 115090. doi: 10.1016/j.envpol.2020.115090
|
[15] |
Pedà C, Caccamo L, Fossi M C, et al. Intestinal alterations in European sea bass Dicentrarchus labrax (linnaeus, 1758) exposed to microplastics: preliminary results[J]. Environmental Pollution, 2016, 212: 251−256. doi: 10.1016/j.envpol.2016.01.083
|
[16] |
Bobori D C, Dimitriadi A, Feidantsis K, et al. Differentiation in the expression of toxic effects of polyethylene-microplastics on two freshwater fish species: size matters[J]. Science of The Total Environment, 2022, 830: 154603. doi: 10.1016/j.scitotenv.2022.154603
|
[17] |
邹雄, 阮泽超, 张燕, 等. 人工繁育条件下的褐菖鲉(Sebastiscus marmoratus)繁殖特性研究[J]. 海洋与湖沼, 2024, 55(4): 1027−1036. doi: 10.11693/hyhz20240200030
Zou Xiong, Ruan Zechao, Zhang Yan, et al. Reproductive biology of fish sebastiscus marmoratus under artificial breeding[J]. Oceanologia et Limnologia Sinica, 2024, 55(4): 1027−1036. doi: 10.11693/hyhz20240200030
|
[18] |
Burns E E, Boxall A B A. Microplastics in the aquatic environment: Evidence for or against adverse impacts and major knowledge gaps[J]. Environmental Toxicology and Chemistry, 2018, 37(11): 2776−2796. doi: 10.1002/etc.4268
|
[19] |
刘涛, 孙晓霞, 朱明亮, 等. 东海表层海水中微塑料分布与组成[J]. 海洋与湖沼, 2018, 49(1): 62−69.
Liu Tao, Sun Xiaoxia, Zhu Mingliang, et al. Distribution and composition of microplastics in the surface water of the east China sea[J]. Oceanologia et Limnologia Sinica, 2018, 49(1): 62−69.
|
[20] |
王洪燕, 赵晟. 浙江舟山养殖海域沉积物微塑料污染特征[J]. 江苏农业科学, 2020, 48(9): 276−281.
Wang Hongyan, Zhao Sheng. Microplastic pollution in sediments in aquaculture sea area of Zhoushan, Zhejiang province[J]. Jiangsu Agricultural Sciences, 2020, 48(9): 276−281.
|
[21] |
周筱田. 浙江省近岸海域水体微塑料分布及其与鼠尾藻DOM相互作用[D]. 舟山: 浙江海洋大学, 2022.
Zhou Xiaotian. Distribution of microplastics in coastal seawaters of Zhejiang province and it interaction with dissolved organic matter from Sargassum thunbergii[D]. Zhoushan: Zhejiang Ocean University, 2022.
|
[22] |
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1995, 57(1): 289−300. doi: 10.1111/j.2517-6161.1995.tb02031.x
|
[23] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the
|
[24] |
Bokulich N A, Kaehler B D, Rideout J R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin[J]. Microbiome, 2018, 6(1): 90. doi: 10.1186/s40168-018-0470-z
|
[25] |
Ding Ruiyang, Ma Yiming, Li Tianyu, et al. The detrimental effects of micro-and nano-plastics on digestive system: an overview of oxidative stress-related adverse outcome pathway[J]. Science of the Total Environment, 2023, 878: 163144. doi: 10.1016/j.scitotenv.2023.163144
|
[26] |
于萍. 微塑料对中华绒螯蟹毒性效应的初步研究[D]. 上海: 华东师范大学, 2019.
Yu Ping. Preliminary study on the toxic effects of microplastics on Eriocheir sinensis[D]. Shanghai: East China Normal University, 2019.
|
[27] |
Limonta G, Mancia A, Benkhalqui A, et al. Microplastics induce transcriptional changes, immune response and behavioral alterations in adult zebrafish[J]. Scientific Reports, 2019, 9(1): 15775. doi: 10.1038/s41598-019-52292-5
|
[28] |
刘佳, 闫子豪, 么宝兰, 等. 鱼类肠道组织结构、功能、影响因素及其保护物质的研究进展[J]. 水产科技情报, 2023, 50(2): 121−127.
Liu Jia, Yan Zihao, Yao Baolan, et al. Research progress on the tissue structure, function, influencing factors and protective substances of fish intestine[J]. Fisheries Science and Technology Information, 2023, 50(2): 121−127.
|
[29] |
Rochman C M, Hoh E, Kurobe T, et al. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress[J]. Scientific Reports, 2013, 3: 3263. doi: 10.1038/srep03263
|
[30] |
刘香, 茹小尚, 张立斌. 海洋微塑料污染的生物效应研究进展[J]. 海洋科学, 2022, 45(3): 122−133.
Liu Xiang, Ru Xiaoshang, Zhang Libin. Research progress on the biological effects of marine microplastic pollution[J]. Marine Sciences, 2022, 45(3): 122−133.
|
[31] |
Rochman C M, Browne M A, Underwood A J, et al. The ecological impacts of marine debris: unraveling the demonstrated evidence from what is perceived[J]. Ecology, 2016, 97(2): 302−312. doi: 10.1890/14-2070.1
|
[32] |
Pedà C, Caccamo L, Fossi M C, et al. Intestinal alterations in European sea bass Dicentrarchus labrax (linnaeus, 1758) exposed to microplastics: preliminary results[J]. Environmental Pollution, 2016, 212: 251−256. (查阅网上资料, 本条文献与第15条文献重复, 请核对)
|
[33] |
Umamaheswari S, Priyadarshinee S, Kadirvelu K, et al. Polystyrene microplastics induce apoptosis via ROS-mediated p53 signaling pathway in zebrafish[J]. Chemico-Biological Interactions, 2021, 345: 109550. (查阅网上资料, 本条文献与第10条文献重复, 请核对)
|
[34] |
Xu Tianchao, Cui Jie, Xu Ran, et al. Microplastics induced inflammation and apoptosis via ferroptosis and the NF-κB pathway in carp[J]. Aquatic Toxicology, 2023, 262: 106659. doi: 10.1016/j.aquatox.2023.106659
|
[35] |
Hou Miaomiao, Xu Chunsen, Zou Xinhua, et al. Long-term exposure to microplastics induces intestinal function dysbiosis in rare minnow (Gobiocypris rarus)[J]. Ecotoxicology and Environmental Safety, 2022, 246: 114157. doi: 10.1016/j.ecoenv.2022.114157
|
[36] |
Sun Zhicheng, Peng Xin, Zhao Linlin, et al. From tissue lesions to neurotoxicity: the devastating effects of small-sized nanoplastics on red drum Sciaenops ocellatus[J]. Science of the Total Environment, 2024, 933: 173238. doi: 10.1016/j.scitotenv.2024.173238
|
[37] |
Mahapatra S, Ganguly B, Pani S, et al. A comprehensive review on the dynamic role of toll-like receptors (TLRs) in frontier aquaculture research and as a promising avenue for fish disease management[J]. International Journal of Biological Macromolecules, 2023, 253: 126541. doi: 10.1016/j.ijbiomac.2023.126541
|
[38] |
Sahoo B R. Structure of fish toll-like receptors (TLR) and NOD-like receptors (NLR)[J]. International Journal of Biological Macromolecules, 2020, 161: 1602−1617. doi: 10.1016/j.ijbiomac.2020.07.293
|
[39] |
Su Shengyan, Jing Xiaojun, Zhang Chengfeng, et al. Interaction between the intestinal microbial community and transcriptome profile in common carp (Cyprinus carpio L. )[J]. Frontiers in Microbiology, 2021, 12: 659602. doi: 10.3389/fmicb.2021.659602
|
[40] |
Jin Yuanxiang, Xia Jizhou, Pan Zihong, et al. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish[J]. Environmental Pollution, 2018, 235: 322−329. doi: 10.1016/j.envpol.2017.12.088
|
[41] |
Zhu Chenxi, Zhou Hui, Bao Mengyu, et al. Polystyrene microplastics induce molecular toxicity in Simocephalus vetulus: a transcriptome and intestinal microorganism analysis[J]. Aquatic Toxicology, 2024, 275: 107046. doi: 10.1016/j.aquatox.2024.107046
|
[42] |
Calder P C. Functional roles of fatty acids and their effects on human health[J]. Journal of Parenteral and Enteral Nutrition, 2015, 39(S1): 18S−32S.
|
[43] |
Calder P C. Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance[J]. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2015, 1851(4): 469−484. doi: 10.1016/j.bbalip.2014.08.010
|
[44] |
Franchi L, Muñoz-Planillo R, Núñez G. Sensing and reacting to microbes through the inflammasomes[J]. Nature Immunology, 2012, 13(4): 325−332. doi: 10.1038/ni.2231
|
[45] |
Chen G, Shaw M H, Kim Y G, et al. NOD-like receptors: Role in innate immunity and inflammatory disease[J]. Annual Review of Pathology: Mechanisms of Disease, 2009, 4: 365−398. doi: 10.1146/annurev.pathol.4.110807.092239
|
[46] |
Vandenabeele P, Galluzzi L, Vanden Berghe T, et al. Molecular mechanisms of necroptosis: an ordered cellular explosion[J]. Nature Reviews Molecular Cell Biology, 2010, 11(10): 700−714. doi: 10.1038/nrm2970
|
[47] |
Browne M A, Crump P, Niven S J, et al. Accumulation of microplastic on shorelines woldwide: sources and sinks[J]. Environmental Science & Technology, 2011, 45(21): 9175−9179.
|
[48] |
Li Yi, Wang Yuqi, Han Shuo, et al. N-acyl-homoserine lactones-mediated quorum sensing promotes intestinal colonization of Aeromonas veronii through facilitating cheA gene expression[J]. Aquaculture, 2024, 579: 740189. doi: 10.1016/j.aquaculture.2023.740189
|
[49] |
梁胜男, 柯楚新, 黄鹤, 等. 肠道内产丁酸细菌及其产物丁酸生理功能的研究进展[J]. 微生物学通报, 2021, 48(3): 948−959.
Liang Shengnan, Ke Chuxin, Huang He, et al. Butyrate-producing bacteria in the intestinal tract and the physiological function of their metabolite butyrate: a review[J]. Microbiology China, 2021, 48(3): 948−959.
|
[50] |
Qiao Ruxia, Sheng Cheng, Lu Yifeng, et al. Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish[J]. Science of the Total Environment, 2019, 662: 246−253. doi: 10.1016/j.scitotenv.2019.01.245
|
[51] |
王美茹, 崔鹏飞, 汝少国. 养殖水环境中抗生素对鱼类肠道菌群结构、功能和抗性组的影响研究进展[J]. 生态毒理学报, 2023, 18(3): 94−111.
Wang Meiru, Cui Pengfei, Ru Shaoguo. Research progress on effects of antibiotics in aquaculture water environ-ment on structure, function and resistome of fish intestinal microbiota[J]. Asian Journal of Ecotoxicology, 2023, 18(3): 94−111.
|
[52] |
Zhang Yong, Qi Xiaozhou, Zhang Zhongyu, et al. Effects of dietary Cetobacterium somerae on the intestinal health, immune parameters and resistance against Nocardia seriolae of largemouth bass, Micropterus salmoides[J]. Fish & Shellfish Immunology, 2023, 135: 108693.
|
[53] |
邓益琴. 水产动物弧菌病及其生物防治研究进展[J]. 大连海洋大学学报, 2023, 38(4): 553−563.
Deng Yiqin. Progress in research on vibriosis and biological control in animals in aquaculture: a review[J]. Journal of Dalian Ocean University, 2023, 38(4): 553−563.
|
[54] |
Jin Yuanxiang, Xia Jizhhou, Pan Zihong, et al. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish[J]. Environmental Pollution, 2018, 235: 322−329. (查阅网上资料, 本条文献与第40条文献重复, 请核对)
|
[55] |
Lu Liang, Wan Zhiqin, Luo Ting, et al. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice[J]. The Science of the Total Environment, 2018, 631−632: 449−458. doi: 10.1016/j.scitotenv.2018.03.051
|