Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 47 Issue 10
Oct.  2025
Turn off MathJax
Article Contents
Yang Wenze,Yang Anxiu,Gao Xingguo, et al. Maximum bathymetric depth estimation for airborne LiDAR without in-situ sampling[J]. Haiyang Xuebao,2025, 47(10):137–145 doi: 10.12284/hyxb2025099
Citation: Yang Wenze,Yang Anxiu,Gao Xingguo, et al. Maximum bathymetric depth estimation for airborne LiDAR without in-situ sampling[J]. Haiyang Xuebao,2025, 47(10):137–145 doi: 10.12284/hyxb2025099

Maximum bathymetric depth estimation for airborne LiDAR without in-situ sampling

doi: 10.12284/hyxb2025099
  • Received Date: 2025-08-18
  • Rev Recd Date: 2025-10-27
  • Available Online: 2025-11-06
  • Publish Date: 2025-10-31
  • Terrain measurement data in shallow water areas provide essential support for marine resource development and water resource investigation and management, making them a focal point in marine surveying and related fields. Airborne LiDAR Bathymetry (ALB) is a high-precision, high-efficiency, and highly mobile measurement technology particularly suited for topographic surveys in shallow water regions. To address the inefficiencies and high costs associated with traditional on-site sampling methods ( Secchi disk transparency measurements) for estimating maximum bathymetric depth using airborne LiDAR, this study proposes a novel method for maximum depth estimation without on-site sampling, integrating satellite remote sensing water color data products with waveform modeling. By retrieving the diffuse attenuation coefficient at 532 nm through inversion of NASA Ocean Color’s Kd(490) product and combining it with a physical model of LiDAR bathymetric echo signals, the method constructs a superimposed waveform model incorporating contributions from the water surface, water column, seabed, and noise. A peak detection algorithm is then employed to automate maximum depth determination. Experimental results from Jiaozhou Bay in Qingdao City, Shandong Province, and Tuosu Lake in Delingha City, Qinghai Province, demonstrate that the proposed method achieves maximum depth estimation with deviations not exceeding 0.4 m and relative errors within 5%, validating its effectiveness. By replacing on-site transparency measurements with satellite remote sensing water color data products, the proposed method eliminates the need for field sampling, significantly reducing the operational costs of airborne LiDAR bathymetry while providing efficient technical support for shallow water mapping and water resource investigations.
  • loading
  • [1]
    赵建虎, 陆振波, 王爱学. 海洋测绘技术发展现状[J]. 测绘地理信息, 2017, 42(6): 1−10.

    Zhao Jianhu, Lu Zhenbo, Wang Aixue. Development status of marine surveying and mapping technology[J]. Journal of Geomatics, 2017, 42(6): 1−10.
    [2]
    王丹菂, 徐青, 邢帅, 等. 一种由粗到精的机载激光测深信号检测方法[J]. 测绘学报, 2018, 47(8): 1148−1159.

    Wang Dandi, Xu Qing, Xing Shuai, et al. A coarse-to-fine signal detection method for airborne LiDAR bathymetry[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(8): 1148−1159.
    [3]
    张一衡, 于孝林, 亓超, 等. 基于海底回波增强的机载LiDAR测深水体旅行时提取算法[J]. 海洋学报, 2023, 45(12): 145−155.

    Zhang Yiheng, Yu Xiaolin, Qi Chao, et al. An algorithm for extracting airborne LiDAR bathymetric travel time in water column based on seabed echo enhancement[J]. Haiyang Xuebao, 2023, 45(12): 145−155.
    [4]
    Hickman G D, Hogg J E. Application of an airborne pulsed laser for near shore bathymetric measurements[J]. Remote Sensing of Environment, 1969, 1(1): 47−58. doi: 10.1016/S0034-4257(69)90088-1
    [5]
    Hojerslev N K. Visibility of the sea with special reference to the Secchi disc[C]//Proceedings of SPIE 0637, Ocean Optics VIII. Orlando: SPIE, 1986: 294−307.
    [6]
    Steinvall O, Klevebrant H, Lexander J, et al. Laser depth sounding in the Baltic Sea[J]. Applied Optics, 1981, 20(19): 3284−3286. doi: 10.1364/AO.20.003284
    [7]
    Guenther G C. Airborne laser hydrography: system design and performance factors, NOAA Professional Paper Series National Ocean Service 1[R]. Rockville, MD: National Oceanic and Atmospheric Administration, 1985.
    [8]
    Kratzer S, Håkansson B, Sahlin C. Assessing Secchi and photic zone depth in the Baltic Sea from satellite data[J]. Ambio, 2003, 32(8): 577−585. doi: 10.1579/0044-7447-32.8.577
    [9]
    姜璐, 朱海, 李松. 机载激光雷达最大探测深度同海水透明度的关系[J]. 激光与红外, 2005, 35(6): 397−399.

    Jiang Lu, Zhu Hai, Li Song. The relationship between max survey depth of airborne ocean Lidar and Secchi depth[J]. Laser & Infrared, 2005, 35(6): 397−399.
    [10]
    李凯, 童晓冲, 张永生, 等. 黄海、东海区域漫衰减系数光谱遥感反演及激光测深性能评估[J]. 遥感学报, 2015, 19(5): 761−769.

    Li Kai, Tong Xiaochong, Zhang Yongsheng, et al. Inversion of diffuse attenuation coefficient spectral in the Yellow Sea / East China Sea and evaluation of laser bathymetric performance[J]. Journal of Remote Sensing, 2015, 19(5): 761−769.
    [11]
    申二华, 张永生, 李凯, 等. 利用MODIS数据估计中国黄东海区域测深参数[J]. 中国图象图形学报, 2016, 21(4): 451−455.

    Shen Erhua, Zhang Yongsheng, Li Kai, et al. Estimation of the Yellow Sea and East China Sea hydrographic parameters based on MODIS data[J]. Journal of Image and Graphics, 2016, 21(4): 451−455.
    [12]
    丁凯, 李清泉, 朱家松, 等. 海南岛沿岸海域水体漫衰减系数光谱分析及LiDAR测深能力估算[J]. 光谱学与光谱分析, 2018, 38(5): 1582−1587.

    Ding Kai, Li Qingquan, Zhu Jiasong, et al. Analysis of diffuse attenuation coefficient spectra of coastal waters of Hainan Island and performance estimation of airborne LiDAR bathymetry[J]. Spectroscopy and Spectral Analysis, 2018, 38(5): 1582−1587.
    [13]
    Schippnick P F. Phenomenological model of beam spreading in ocean water[C]//Proceedings of SPIE 1302, Ocean Optics X. Orlando: SPIE, 1990: 13−37.
    [14]
    姚春华, 陈卫标, 臧华国, 等. 机载激光测深系统的最小可探测深度研究[J]. 光学学报, 2004, 24(10): 1406−1410.

    Yao Chunhua, Chen Weibiao, Zang Huaguo, et al. Study of the capability of minimum depth using an airborne laser bathymetry[J]. Acta Optica Sinica, 2004, 24(10): 1406−1410.
    [15]
    Abdallah H, Baghdadi N, Bailly J S, et al. Wa-LiD: a new LiDAR simulator for waters[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4): 744−748. doi: 10.1109/LGRS.2011.2180506
    [16]
    张震, 马毅, 张靖宇, 等. 基于水体回波信号仿真的激光雷达水深探测模型研究[J]. 海洋技术学报, 2015, 34(6): 13−18.

    Zhang Zhen, Ma Yi, Zhang Jingyu, et al. Research on the water depth detection model based on LiDAR echo signal simulation[J]. Journal of Ocean Technology, 2015, 34(6): 13−18.
    [17]
    亓超, 周丰年, 吴敬文, 等. 基于机载LiDAR测深水体波形的漫衰减系数提取方法[J]. 海洋学报, 2021, 43(1): 147−154.

    Qi Chao, Zhou Fengnian, Wu Jingwen, et al. Extraction method for diffuse attenuation coefficient based on airborne LiDAR bathymetric water column waveform[J]. Haiyang Xuebao, 2021, 43(1): 147−154.
    [18]
    Gordon H R, Smith R C, Ronald J, et al. Introduction to ocean optics[C]//Proceedings of SPIE 0208, Ocean Optics VI. Monterey: SPIE, 1980: 14−55.
    [19]
    Lee Z P, Du Keping, Arnone R. A model for the diffuse attenuation coefficient of downwelling irradiance[J]. Journal of Geophysical Research: Oceans, 2005, 110(C2): C02016.
    [20]
    王晓梅, 唐军武, 丁静, 等. 黄海、东海二类水体漫衰减系数与透明度反演模式研究[J]. 海洋学报, 2005, 27(5): 38−45.

    Wang Xiaomei, Tang Junwu, Ding Jing, et al. The retrieval algorithms of diffuse attenuation and transparency for the Case-II waters of the Huanghai Sea and the East China Sea[J]. Haiyang Xuebao, 2005, 27(5): 38−45.
    [21]
    Austin R W, Petzold T J. Spectral dependence of the diffuse attenuation coefficient of light in ocean waters[J]. Optical Engineering, 1986, 25(3): 253471. doi: 10.1117/12.7973845
    [22]
    Wang Chisheng, Li Qingquan, Liu Yanxiong, et al. A comparison of waveform processing algorithms for single-wavelength LiDAR bathymetry[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 101: 22−35. doi: 10.1016/j.isprsjprs.2014.11.005
    [23]
    贺岩, 陶邦一, 俞家勇, 等. 机载激光测深技术及应用[J]. 中国激光, 2024, 51(11): 1101016.

    He Yan, Tao Bangyi, Yu Jiayong, et al. Development of airborne LiDAR bathymetric technology and application[J]. Chinese Journal of Lasers, 2024, 51(11): 1101016.
    [24]
    宿殿鹏, 王斌, 买小争, 等. 面向无现场控制的机载测深LiDAR安置角误差检校[J]. 测绘学报, 2025, 54(6): 1042−1053.

    Su Dianpeng, Wang Bin, Mai Xiaozheng, et al. Calibration of placement angle errors of airborne bathymetric LiDAR without field control[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 1042−1053.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article views (151) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return