| Citation: | Zhao Xiangyu,Wang Zhiyong,Li Zhenjin, et al. A spatiotemporal prediction method for Arctic monthly mean sea ice concentration based on an improved SA-ConvLSTM model[J]. Haiyang Xuebao,2025, 47(10):111–125 doi: 10.12284/hyxb2025095 |
| [1] |
Sumata H, de Steur L, Divine D V, et al. Regime shift in Arctic Ocean sea ice thickness[J]. Nature, 2023, 615(7952): 443−449. doi: 10.1038/s41586-022-05686-x
|
| [2] |
Ingvaldsen R B, Assmann K M, Primicerio R, et al. Physical manifestations and ecological implications of Arctic Atlantification[J]. Nature Reviews Earth & Environment, 2021, 2(12): 874−889.
|
| [3] |
田康, 王志勇, 李振今, 等. 格陵兰彼得曼冰川表面运动特征和季节年度变化分析[J]. 测绘通报, 2024(7): 35−40,54.
Tian Kang, Wang Zhiyong, Li Zhenjin, et al. Analysis of surface movement characteristics and seasonal annual variation of Petermann Glacier in Greenland[J]. Bulletin of Surveying and Mapping, 2024(7): 35−40,54.
|
| [4] |
曹云锋, 于萌, 惠凤鸣, 等. 北极冰区通航能力变化研究进展[J]. 科学通报, 2021, 66(1): 21−33. doi: 10.1360/TB-2020-0596
Cao Yunfeng, Yu Meng, Hui Fengming, et al. Review of navigability changes in trans-Arctic routes[J]. Chinese Science Bulletin, 2021, 66(1): 21−33. doi: 10.1360/TB-2020-0596
|
| [5] |
Sardain A, Sardain E, Leung B. Global forecasts of shipping traffic and biological invasions to 2050[J]. Nature Sustainability, 2019, 2(4): 274−282. doi: 10.1038/s41893-019-0245-y
|
| [6] |
刘泉宏, 张韧, 汪杨骏, 等. 深度学习方法在北极海冰预报中的应用[J]. 大气科学学报, 2022, 45(1): 14−21.
Liu Quanhong, Zhang Ren, Wang Yangjun, et al. Application of deep learning methods to Arctic sea ice prediction[J]. Transactions of Atmospheric Sciences, 2022, 45(1): 14−21.
|
| [7] |
Horvath S, Stroeve J, Rajagopalan B, et al. A Bayesian logistic regression for probabilistic forecasts of the minimum September Arctic sea ice cover[J]. Earth and Space Science, 2020, 7(10): e2020EA001176. doi: 10.1029/2020EA001176
|
| [8] |
Reichstein M, Camps-Valls G, Stevens B, et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019, 566(7743): 195−204. doi: 10.1038/s41586-019-0912-1
|
| [9] |
Chi J, Kim H C. Prediction of Arctic sea ice concentration using a fully data driven deep neural network[J]. Remote Sensing, 2017, 9(12): 1305. doi: 10.3390/rs9121305
|
| [10] |
Kim Y J, Kim H C, Han D, et al. Prediction of monthly Arctic sea ice concentrations using satellite and reanalysis data based on convolutional neural networks[J]. The Cryosphere, 2020, 14(3): 1083−1104. doi: 10.5194/tc-14-1083-2020
|
| [11] |
Christofi V P, Wang Xiaodi. Optimizing the LSTM deep learning model for Arctic sea ice melting prediction[J]. Atmospheric and Climate Sciences, 2024, 14(4): 429−449. doi: 10.4236/acs.2024.144026
|
| [12] |
Moishin M, Deo R C, Prasad R, et al. Designing deep-based learning flood forecast model with ConvLSTM hybrid algorithm[J]. IEEE Access, 2021, 9: 50982−50993. doi: 10.1109/ACCESS.2021.3065939
|
| [13] |
Liu Quanhong, Zhang Ren, Wang Yangjun, et al. Daily prediction of the Arctic sea ice concentration using reanalysis data based on a convolutional LSTM network[J]. Journal of Marine Science and Engineering, 2021, 9(3): 330. doi: 10.3390/jmse9030330
|
| [14] |
Li Penglun, Leng Hongze, Ma Beibei, et al. Monthly Arctic sea ice concentration prediction based on the ConvLSTM model[C]//IEEE 2021 International Conference on Computer Information Science and Artificial Intelligence (CISAI). Kunming: IEEE, 2021: 162−167.
|
| [15] |
Andersson T R, Hosking J S, Pérez-Ortiz M, et al. Seasonal Arctic sea ice forecasting with probabilistic deep learning[J]. Nature Communications, 2021, 12(1): 5124. doi: 10.1038/s41467-021-25257-4
|
| [16] |
Ren Yibin, Li Xiaofeng, Zhang Wenhao. A data-driven deep learning model for weekly sea ice concentration prediction of the pan-Arctic during the melting season[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4304819.
|
| [17] |
Fu En, Zhang Yinong, Yang Fan, et al. Temporal self-attention-based Conv-LSTM network for multivariate time series prediction[J]. Neurocomputing, 2022, 501: 162−173. doi: 10.1016/j.neucom.2022.06.014
|
| [18] |
Zheng Qingyu, Wang Ru, Han Guijun, et al. A spatiotemporal multiscale deep learning model for subseasonal prediction of Arctic sea ice[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4300522.
|
| [19] |
孙士昌, 王志勇, 李振今, 等. 基于改进DeepLabV3+模型的海冰提取方法——以北极格陵兰海为例[J]. 海洋学报, 2024, 46(8): 131−142.
Sun Shichang, Wang Zhiyong, Li Zhenjin, et al. An extraction method for sea ice based on improved DeepLabV3+ model: taking the Arctic Greenland Sea as an example[J]. Haiyang Xuebao, 2024, 46(8): 131−142.
|
| [20] |
Ge Hongxia, Li Siteng, Cheng Rongjun, et al. Self-attention ConvLSTM for spatiotemporal forecasting of short-term online car-hailing demand[J]. Sustainability, 2022, 14(12): 7371. doi: 10.3390/su14127371
|
| [21] |
Fang Wei, Chen Yupeng, Xue Qiongying. Survey on research of RNN-based spatio-temporal sequence prediction algorithms[J]. Journal on Big Data, 2021, 3(3): 97−110. doi: 10.32604/jbd.2021.016993
|
| [22] |
Sriram A, Jun H, Satheesh S, et al. Cold fusion: training Seq2Seq models together with language models[C]//19th Annual Conference of the International Speech Communication Association. Hyderabad: ISCA, 2018: 387−391.
|
| [23] |
Chen Mingjun, Bovik A C. Fast structural similarity index algorithm[J]. Journal of Real-Time Image Processing, 2011, 6(4): 281−287. doi: 10.1007/s11554-010-0170-9
|
| [24] |
李朋伦. 基于深度学习的全球海冰资料模拟预测研究[D]. 长沙: 国防科技大学, 2021.
Li Penglun. Simulation and prediction of global sea ice data based on deep learning[D]. Changsha: National University of Defense Technology, 2021.
|