Citation: | Bu Xianhai,Tan Xinyue,Zhang Jianxing, et al. Development of a high-precision deep-sea seabed terrain model through frequency domain weighted fusion of multi-source data: A case study in the southern waters of greenland[J]. Haiyang Xuebao,2025, 47(8):101–115 doi: 10.12284/hyxb2025081 |
[1] |
吴园涛, 段晓男, 沈刚, 等. 强化我国海洋领域国家战略科技力量的思考与建议[J]. 地球科学进展, 2021, 36(4): 413−420. doi: 10.11867/j.issn.1001-8166.2021.039
Wu Yuantao, Duan Xiaonan, Shen Gang, et al. Thoughts and suggestions on strengthening the national strategic scientific and technological forces in the marine field of China[J]. Advances in Earth Science, 2021, 36(4): 413−420. doi: 10.11867/j.issn.1001-8166.2021.039
|
[2] |
吴自银, 阳凡林, 李守军, 等. 高分辨率海底地形地貌——探测处理理论与技术[M]. 北京: 科学出版社, 2017.
Wu Ziyin, Yang Fanlin, Li Shoujun, et al. High Resolution Submarine Geomorphology[M]. Beijing: Science Press, 2017.
|
[3] |
阳凡林, 沈瑞杰, 梅赛, 等. 联合重力异常和重力垂直梯度异常数据反演皇帝山海域海底地形[J]. 海洋学报, 2022, 44(12): 126−135.
Yang Fanlin, Shen Ruijie, Mei Sai, et al. Inversion of seafloor topography in Emperor Seamount sea area by combined gravity anomalies and vertical gravity gradient anomalies data[J]. Haiyang Xuebao, 2022, 44(12): 126−135.
|
[4] |
Amoroso P P, Aguilar F J, Parente C, et al. Statistical assessment of some interpolation methods for building grid format digital bathymetric models[J]. Remote Sensing, 2023, 15(8): 2072. doi: 10.3390/rs15082072
|
[5] |
Lambev T, Prodanov B, Dimitrov L, et al. Digital bathymetric model of the Burgas Bay, Bulgarian Black Sea[C]//Proceedings of SPIE 11524, Eighth International Conference on Remote Sensing and Geoinformation of the Environment. Paphos: SPIE, 2020: 1152421.
|
[6] |
Mayer L, Jakobsson M, Allen G, et al. The Nippon foundation—GEBCO seabed 2030 project: the quest to see the world’s oceans completely mapped by 2030[J]. Geosciences, 2018, 8(2): 63. doi: 10.3390/geosciences8020063
|
[7] |
Niyazi Y, Thomas E A, Pucino N, et al. Status of global seafloor mapping effort and priority areas for future mapping[J]. Frontiers in Marine Science, 2025, 12: 1543885. doi: 10.3389/fmars.2025.1543885
|
[8] |
Tozer B, Sandwell D T, Smith W H F, et al. Global bathymetry and topography at 15 arc sec: SRTM15+[J]. Earth and Space Science, 2019, 6(10): 1847−1864. doi: 10.1029/2019EA000658
|
[9] |
Jakobsson M, Mohammad R, Karlsson M, et al. The international bathymetric chart of the arctic ocean version 5.0[J]. Scientific Data, 2024, 11(1): 1420. doi: 10.1038/s41597-024-04278-w
|
[10] |
Dorschel B, Hehemann L, Viquerat S, et al. The international bathymetric chart of the southern ocean version 2[J]. Scientific Data, 2022, 9(1): 275. doi: 10.1038/s41597-022-01366-7
|
[11] |
Jakobsson M, Mayer L A, Bringensparr C, et al. The international bathymetric chart of the arctic ocean version 4.0[J]. Scientific Data, 2020, 7(1): 176. doi: 10.1038/s41597-020-0520-9
|
[12] |
Fan Diao, Li Shanshan, Feng Jinkai, et al. A new global bathymetry model: STO_IEU2020[J]. Remote Sensing, 2022, 14(22): 5744. doi: 10.3390/rs14225744
|
[13] |
Smith W H F, Wessel P. Gridding with continuous curvature splines in tension[J]. Geophysics, 1990, 55(3): 293−305. doi: 10.1190/1.1442837
|
[14] |
Shepard D. A two-dimensional interpolation function for irregularly-spaced data[C]//Proceedings of the 1968 23rd ACM National Conference. ACM, 1968: 517−524.
|
[15] |
Oliver M A, Webster R. Kriging: a method of interpolation for geographical information systems[J]. International Journal of Geographical Information Systems, 1990, 4(3): 313−332. doi: 10.1080/02693799008941549
|
[16] |
Lloyd C D, Atkinson P M. Deriving DSMs from LiDAR data with kriging[J]. International Journal of Remote Sensing, 2002, 23(12): 2519−2524. doi: 10.1080/01431160110097998
|
[17] |
Šiljeg A, Lozić S, Šiljeg S. A comparison of interpolation methods on the basis of data obtained from a bathymetric survey of Lake Vrana, Croatia[J]. Hydrology and Earth System Sciences, 2015, 19(8): 3653−3666. doi: 10.5194/hess-19-3653-2015
|
[18] |
Bäckström A. A new digital bathymetric model of Lake Vättern, Southern Sweden[D]. Stockholm: Stockholm University, 2018.
|
[19] |
王可伟, 高利华, 江锋. 基于改进反距离加权算法的海底DEM建模方法[J]. 海洋测绘, 2021, 41(1): 61−64. doi: 10.3969/j.issn.1671-3044.2021.01.013
Wang Kewei, Gao Lihua, Jiang Feng. A method of seabed DEM modeling based on the improved inverse distance weighted interpolation algorithm[J]. Hydrographic Surveying and Charting, 2021, 41(1): 61−64. doi: 10.3969/j.issn.1671-3044.2021.01.013
|
[20] |
Jakobsson M, Mayer L, Coakley B, et al. The international bathymetric chart of the Arctic Ocean (IBCAO) version 3.0[J]. Geophysical Research Letters, 2012, 39(12): L12609.
|
[21] |
Arndt J E, Schenke H W, Jakobsson M, et al. The International Bathymetric Chart of the Southern Ocean (IBCSO) Version 1.0—A new bathymetric compilation covering circum-Antarctic waters[J]. Geophysical Research Letters, 2013, 40(12): 3111−3117. doi: 10.1002/grl.50413
|
[22] |
Weatherall P, Marks K M, Jakobsson M, et al. A new digital bathymetric model of the world’s oceans[J]. Earth and Space Science, 2015, 2(8): 331−345. doi: 10.1002/2015EA000107
|
[23] |
樊妙, 孙毅, 邢喆, 等. 基于多源水深数据融合的海底高精度地形重建[J]. 海洋学报, 2017, 39(1): 130−137. doi: 10.3969/j.issn.0253-4193.2017.01.014
Fan Miao, Sun Yi, Xing Zhe, et al. Bathymetry fusion techniques for high-resolution digital bathymetric modeling[J]. Haiyang Xuebao, 2017, 39(1): 130−137. doi: 10.3969/j.issn.0253-4193.2017.01.014
|
[24] |
徐泽, 高金耀, 杨春国, 等. 南极罗斯海高分辨率数字水深模型[J]. 极地研究, 2018, 30(4): 360−369.
Xu Ze, Gao Jinyao, Yang Chunguo, et al. A new high-resolution digital bathymetric model of the ross sea, Antarctica[J]. Chinese Journal of Polar Research, 2018, 30(4): 360−369.
|
[25] |
程建华, 黄孟远, 葛靖宇, 等. 基于改进“移去−恢复”算法的海底地形构建方法研究[J]. 地球信息科学学报, 2021, 23(3): 377−384. doi: 10.12082/dqxxkx.2021.200255
Cheng Jianhua, Huang Mengyuan, Ge Jingyu, et al. Research on construction method of seabed topography based on improved “remove-restore” algorithm[J]. Journal of Geo-Information Science, 2021, 23(3): 377−384. doi: 10.12082/dqxxkx.2021.200255
|
[26] |
Liu Yang, Wu Ziyin, Zhao Dineng, et al. Construction of high-resolution bathymetric dataset for the Mariana trench[J]. IEEE Access, 2019, 7: 142441−142450. doi: 10.1109/ACCESS.2019.2944667
|
[27] |
Smith W H F, Sandwell D T. Global sea floor topography from satellite altimetry and ship depth soundings[J]. Science, 1997, 277(5334): 1956−1962. doi: 10.1126/science.277.5334.1956
|
[28] |
Sandwell D T, Smith W H F. Marine gravity anomaly from Geosat and ERS 1 satellite altimetry[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B5): 10039−10054. doi: 10.1029/96JB03223
|
[29] |
熊桂芳, 王波, 朱长德, 等. 基于多源数据融合的澎湖水道数字水深模型构建[J]. 海洋科学进展, 2024, 42(1): 149−159. doi: 10.12362/j.issn.1671-6647.20220606002
Xiong Guifang, Wang Bo, Zhu Changde, et al. Construction of Penghu channel digital bathymetric model based on multisource data fusion[J]. Advances in Marine Science, 2024, 42(1): 149−159. doi: 10.12362/j.issn.1671-6647.20220606002
|
[30] |
Ruan Xiaoguang, Cheng Liang, Chu Sensen, et al. A new digital bathymetric model of the South China Sea based on the subregional fusion of seven global seafloor topography products[J]. Geomorphology, 2020, 370: 107403. doi: 10.1016/j.geomorph.2020.107403
|
[31] |
阮晓光, 占赵杰, 闫兆进, 等. 基于全球测深数据的中国海岸线周边海域数字水深模型融合[J]. 海洋学报, 2024, 46(7): 16−28. doi: 10.12284/hyxb2024062
Ruan Xiaoguang, Zhan Zhaojie, Yan Zhaojin, et al. Digital bathymetric model fusion of offshore waters around China’s coastline based on global bathymetry data[J]. Haiyang Xuebao, 2024, 46(7): 16−28. doi: 10.12284/hyxb2024062
|
[32] |
Chen Zhaoyu, Liu Qiankun, Xu Ke, et al. Weighted fusion method of marine gravity field model based on water depth segmentation[J]. Remote Sensing, 2024, 16(21): 4107. doi: 10.3390/rs16214107
|
[33] |
赵建虎, 张红梅, 严俊, 等. 削弱残余误差对多波束测深综合影响的方法研究[J]. 武汉大学学报(信息科学版), 2013, 38(10): 1184−1187.
Zhao Jianhu, Zhang Hongmei, Yan Jun, et al. Weakening influence of residual error for MBS sounding[J]. Geomatics and Information Science of Wuhan University, 2013, 38(10): 1184−1187.
|
[34] |
周平. 多波束测深条带拼接区误差处理方法研究[D]. 南昌: 东华理工大学, 2017.
Zhou Ping. Research on error processing methods in multi-beam sounding swath joins[D]. Nanchang: East China University of Technology, 2017.
|
[35] |
马伟鹏, 杨海忠, 孙建伟. 基于地形频谱分析提高多波束条带拼接效果应用[J]. 海洋地质前沿, 2018, 34(8): 68−72.
Ma Weipeng, Yang Haizhong, Sun Jianwei. Improvement of multi-beam stripe splicing effect based on topographic spectrum analysis[J]. Marine Geology Frontiers, 2018, 34(8): 68−72.
|
[36] |
孙亮, 严薇, 刘平芝, 等. 采用小波分析的SRTM DEM与ASTER DEM数据融合[J]. 测绘科学技术学报, 2014, 31(4): 388−392. doi: 10.3969/j.issn.1673-6338.2014.04.013
Sun Liang, Yan Wei, Liu Pingzhi, et al. Data fusion of SRTM DEM and ASTER DEM based on wavelet analysis[J]. Journal of Geomatics Science and Technology, 2014, 31(4): 388−392. doi: 10.3969/j.issn.1673-6338.2014.04.013
|
[37] |
Tian Yu, Lei Shaogang, Bian Zhengfu, et al. Improving the accuracy of open source digital elevation models with multi-scale fusion and a slope position-based linear regression method[J]. Remote Sensing, 2018, 10(12): 1861. doi: 10.3390/rs10121861
|
[38] |
Amante C, Eakins B W. ETOPO1 arc-minute global relief model: procedures, data sources and analysis[R]. Boulder: NOAA, 2009.
|
[39] |
MacFerrin M, Amante C, Carignan K, et al. The earth topography 2022 (ETOPO 2022) global DEM dataset[J]. Earth System Science Data, 2025, 17(4): 1835–1849.
|
[40] |
Becker J J, Sandwell D T, Smith W H F, et al. Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS[J]. Marine Geodesy, 2009, 32(4): 355−371. doi: 10.1080/01490410903297766
|
[41] |
Andersen O B, Knudsen P. The DTU17 global marine gravity field: first validation results[M]//Mertikas S P, Pail R. Fiducial Reference Measurements for Altimetry: Proceedings of the International Review Workshop on Satellite Altimetry Cal/Val Activities and Applications. Cham: Springer, 2019: 83−87.
|