Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Turn off MathJax
Article Contents
Jiang Jingjing,Zhang Yanhao,Long Qinggang, et al. Effects of different water velocities on survival, growth and physiology of the Zostera marina transplants[J]. Haiyang Xuebao,2025, 47(3):1–11 doi: 10.12284/hyxb2025038
Citation: Jiang Jingjing,Zhang Yanhao,Long Qinggang, et al. Effects of different water velocities on survival, growth and physiology of the Zostera marina transplants[J]. Haiyang Xuebao,2025, 47(3):1–11 doi: 10.12284/hyxb2025038

Effects of different water velocities on survival, growth and physiology of the Zostera marina transplants

doi: 10.12284/hyxb2025038
  • Available Online: 2025-02-11
  • To investigate the survival, growth, and physiological responses of Zostera marina transplants to different water velocities and determine the optimal flow velocity range, an experiment was conducted. The study aimed to elucidate the effects of water velocity on Z. marina transplants by measuring and evaluating their survival rates, growth performance, and physiological indicators, as well as examining the interrelationships among these factors. Results indicated that the survival rate of transplanted Z. marina plants peaked at 0.4 m/s, being 1.1−2.4 times higher than those in the other treatments (P<0.05). Notably, all plants in the control group perished. Aboveground tissue growth decreased progressively with increasing water velocity, while belowground tissue growth increased gradually. Specifically, leaf elongation rate at 1 m/s was 24.0% lower compared to 0.2 m/s, whereas belowground dry weight at 0.4 m/s was 1.6 times higher than that at 0.2 m/s. Photosynthetic pigment and nonstructural carbohydrates contents in leaves reached their lowest levels between 0.4 and 0.6 m/s, decreasing by 0.8% to 18.5% relative to other treatments. Considering the survival and growth comprehensive income index and physiological index stability coefficient, the suitable flow velocity range for Z. marina transplants is 0.3 to 0.8 m/s, with an optimal range of 0.4 to 0.6 m/s. These findings suggest that moderately increasing water flow velocity can facilitate the rapid establishment and expansion of Z. marina transplants.
  • loading
  • [1]
    Lambert V, Bainbridge Z T, Collier C, et al. Connecting targets for catchment sediment loads to ecological outcomes for seagrass using multiple lines of evidence[J]. Marine Pollution Bulletin, 2021, 169: 112494. doi: 10.1016/j.marpolbul.2021.112494
    [2]
    李文涛, 张秀梅. 海草场的生态功能[J]. 中国海洋大学学报(自然科学版), 2009, 39(5): 933−939.

    Li Wentao, Zhang Xiumei. The ecological functions of seagrass meadows[J]. Periodical of Ocean University of China, 2009, 39(5): 933−939.
    [3]
    郑凤英, 韩晓弟, 张伟, 等. 大叶藻形态及生长发育特征[J]. 海洋科学, 2013, 37(10): 39−46.

    Zheng Fengying, Han Xiaodi, Zhang Wei, et al. Characteristics of morphology, growth and development of Zostera marina L.[J]. Marine Sciences, 2013, 37(10): 39−46.
    [4]
    Froeschke J T, Stunz G W. Hierarchical and interactive habitat selection in response to abiotic and biotic factors: the effect of hypoxia on habitat selection of juvenile estuarine fishes[J]. Environmental Biology of Fishes, 2012, 93(1): 31−41. doi: 10.1007/s10641-011-9887-y
    [5]
    Waycott M, Duarte C M, Carruthers T J B, et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(30): 12377−12381.
    [6]
    周毅, 江志坚, 邱广龙, 等. 中国海草资源分布现状、退化原因与保护对策[J]. 海洋与湖沼, 2023, 54(5): 1248−1257.

    Zhou Yi, Jiang Zhijian, Qiu Guanglong, et al. Distribution status, degradation reasons and protection countermeasures of seagrass resources in China[J]. Oceanologia et Limnologia Sinica, 2023, 54(5): 1248−1257.
    [7]
    Tan Yimei, Coleman R A, Biro P A. Developing seed- and shoot-based restoration approaches for the seagrass, Zostera muelleri[J]. Restoration Ecology, 2023, 31(5): e13902. doi: 10.1111/rec.13902
    [8]
    Saewong C, Ow Y X, Nualla-ong A, et al. Comparative effects of heat stress on photosynthesis and oxidative stress in Halophila ovalis and Thalassia hemprichii under different light conditions[J]. Marine Environmental Research, 2024, 199: 106589. doi: 10.1016/j.marenvres.2024.106589
    [9]
    de Boer W F. Seagrass–sediment interactions, positive feedbacks and critical thresholds for occurrence: a review[J]. Hydrobiologia, 2007, 591(1): 5−24. doi: 10.1007/s10750-007-0780-9
    [10]
    Orth R J, Carruthers T J B, Dennison W C, et al. A global crisis for seagrass ecosystems[J]. Bioscience, 2006, 56(12): 987−996. doi: 10.1641/0006-3568(2006)56[987:AGCFSE]2.0.CO;2
    [11]
    De Cock A W A M. Flowering, pollination and fruiting in Zostera marina L.[J]. Aquatic Botany, 1980, 9: 201−220. doi: 10.1016/0304-3770(80)90023-6
    [12]
    Westlake D F. Some effects of low-velocity currents on the metabolism of aquatic macrophytes[J]. Journal of Experimental Botany, 1967, 18(2): 187−205. doi: 10.1093/jxb/18.2.187
    [13]
    Conover J T. The importance of natural diffusion gradients and transport of substances related to benthic marine plant metabolism[J]. Botanica Marina, 1968, 11(1/4): 1−9.
    [14]
    Stevenson J C. Comparative ecology of submersed grass beds in freshwater, estuarine, and marine environments[J]. Limnology and Oceanography, 1988, 33(4part2): 867−893. doi: 10.4319/lo.1988.33.4part2.0867
    [15]
    Koch E W. Preliminary evidence on the interdependent effect of currents and porewater geochemistry on Thalassia testudinum Banks ex König seedlings[J]. Aquatic Botany, 1999, 63(2): 95−102. doi: 10.1016/S0304-3770(98)00116-8
    [16]
    Harlin M M, Thorne-Miller B. Nutrient enrichment of seagrass beds in a Rhode Island coastal lagoon[J]. Marine biology, 1981, 65(3): 221−229. doi: 10.1007/BF00397115
    [17]
    刘子健, 李卫明, 张续同, 等. 静水与流水条件下沉水植物生长对上覆水和沉积物磷迁移的影响[J]. 环境科学研究, 2023, 36(5): 975−985.

    Liu Zijian, Li Weiming, Zhang Xutong, et al. Effects of submerged macrophytes on phosphorus transport between overlying water and sediment in the growth period under static and flowing conditions[J]. Research of Environmental Sciences, 2023, 36(5): 975−985.
    [18]
    van Katwijk M M, Hermus D C R. Effects of water dynamics on Zostera marina: transplantation experiments in the intertidal Dutch Wadden Sea[J]. Marine Ecology Progress Series, 2000, 208: 107−118. doi: 10.3354/meps208107
    [19]
    Fonseca M S, Zieman J C, Thayer G W, et al. The role of current velocity in structuring eelgrass (Zostera marina L. ) meadows[J]. Estuarine, Coastal and Shelf Science, 1983, 17(4): 367−380. doi: 10.1016/0272-7714(83)90123-3
    [20]
    Fonseca M S, Kenworthy W J. Effects of current on photosynthesis and distribution of seagrasses[J]. Aquatic Botany, 1987, 27(1): 59−78. doi: 10.1016/0304-3770(87)90086-6
    [21]
    张倩, 柳杰, 张沛东, 等. 不同水流流速对大叶藻移植植株存活、生长及光合色素含量的影响[J]. 海洋环境科学, 2015, 34(6): 806−812.

    Zhang Qian, Liu Jie, Zhang Peidong, et al. Effects of different current velocities on survival, growth and photosynthetic pigment contents of Zostera marina transplants[J]. Marine Environmental Science, 2015, 34(6): 806−812.
    [22]
    刘有才, 李林强, 马旺, 等. 鳗草海草床植株移植方法及应用效果研究[J]. 河北地质大学学报, 2023, 46(6): 75−79.

    Liu Youcai, Li Linqiang, Ma Wang, et al. Study on transplanting method and application effect of eelgrass bed plants[J]. Journal of Hebei GEO University, 2023, 46(6): 75−79.
    [23]
    Zhang Yanhao, Yu Bing, Liu Youcai, et al. The influence of decreased salinity levels on the survival, growth and physiology of eelgrass Zostera marina[J]. Marine Environmental Research, 2022, 182: 105787. doi: 10.1016/j.marenvres.2022.105787
    [24]
    Zieman J C. Methods for the study of the growth and production of turtle grass, Thalassia testudinum König[J]. Aquaculture, 1974, 4: 139−143. doi: 10.1016/0044-8486(74)90029-5
    [25]
    Xu Junge, Zhang Qian, Li Hongchen, et al. Changes in survival, growth and photosynthetic pigment in response to iron increase in the leaf and root-rhizome tissues of eelgrass Zostera marina[J]. Aquatic Botany, 2019, 154: 60−65. doi: 10.1016/j.aquabot.2018.12.007
    [26]
    王文杰, 贺海升, 关宇, 等. 丙酮和二甲基亚砜法测定植物叶绿素和类胡萝卜素的方法学比较[J]. 植物研究, 2009, 29(2): 224−229. doi: 10.7525/j.issn.1673-5102.2009.02.017

    Wang Wenjie, He Haisheng, Guan Yu, et al. Methodological comparison of chlorophyll and carotenoids contents of plant species measured by DMSO and acetone-extraction methods[J]. Bulletin of Botanical Research, 2009, 29(2): 224−229. doi: 10.7525/j.issn.1673-5102.2009.02.017
    [27]
    Lewis M A, Dantin D D, Chancy C A, et al. Florida seagrass habitat evaluation: a comparative survey for chemical quality[J]. Environmental Pollution, 2007, 146(1): 206−218. doi: 10.1016/j.envpol.2006.04.041
    [28]
    Koch E W. Beyond light: physical, geological, and geochemical parameters as possible submersed aquatic vegetation habitat requirements[J]. Estuaries, 2001, 24(1): 1−17. doi: 10.2307/1352808
    [29]
    Pedersen O, Binzer T, Borum J. Sulphide intrusion in eelgrass (Zostera marina L. )[J]. Plant, Cell & Environment, 2004, 27(5): 595−602.
    [30]
    Zhang Yu, Yue Shidong, Gao Yaping, et al. Insights into response of seagrass (Zostera marina) to sulfide exposure at morphological, physiochemical and molecular levels in context of coastal eutrophication and warming[J]. Plant, Cell & Environment, 2024, 47(12): 4768−4785.
    [31]
    Wargo C A, Styles R. Along channel flow and sediment dynamics at North Inlet, South Carolina[J]. Estuarine, Coastal and Shelf Science, 2007, 71(3/4): 669−682.
    [32]
    Cabaço S, Santos R, Duarte C M. The impact of sediment burial and erosion on seagrasses: a review[J]. Estuarine, Coastal and Shelf Science, 2008, 79(3): 354−366. doi: 10.1016/j.ecss.2008.04.021
    [33]
    Bastyan G R, Cambridge M L. Transplantation as a method for restoring the seagrass Posidonia australis[J]. Estuarine, Coastal and Shelf Science, 2008, 79(2): 289−299. doi: 10.1016/j.ecss.2008.04.012
    [34]
    Schanz A, Asmus H. Impact of hydrodynamics on development and morphology of intertidal seagrasses in the Wadden Sea[J]. Marine Ecology Progress Series, 2003, 261: 123−134. doi: 10.3354/meps261123
    [35]
    Jiménez-Ramos R, Henares C, Egea L G, et al. Leaf senescence of the seagrass Cymodocea nodosa in Cádiz Bay, Southern Spain[J]. Diversity, 2023, 15(2): 187. doi: 10.3390/d15020187
    [36]
    La Nafie Y A, de Los Santos C B, Brun F G, et al. Waves and high nutrient loads jointly decrease survival and separately affect morphological and biomechanical properties in the seagrass Zostera noltii[J]. Limnology and Oceanography, 2012, 57(6): 1664−1672. doi: 10.4319/lo.2012.57.6.1664
    [37]
    de Los Santos C B, Brun F G, Bouma T J, et al. Acclimation of seagrass Zostera noltii to co-occurring hydrodynamic and light stresses[J]. Marine Ecology Progress Series, 2010, 398: 127−135. doi: 10.3354/meps08343
    [38]
    Puijalon S, Bornette G, Sagnes P. Adaptations to increasing hydraulic stress: morphology, hydrodynamics and fitness of two higher aquatic plant species[J]. Journal of Experimental Botany, 2005, 56(412): 777−786. doi: 10.1093/jxb/eri063
    [39]
    Widdows J, Pope N D, Brinsley M D, et al. Effects of seagrass beds (Zostera noltii and Z. marina) on near-bed hydrodynamics and sediment resuspension[J]. Marine Ecology Progress Series, 2008, 358: 125−136. doi: 10.3354/meps07338
    [40]
    Di Carlo G, Badalamenti F, Terlizzi A. Recruitment of Posidonia oceanica on rubble mounds: Substratum effects on biomass partitioning and leaf morphology[J]. Aquatic Botany, 2007, 87(2): 97−103. doi: 10.1016/j.aquabot.2007.02.003
    [41]
    McKone K L. Light available to the seagrass Zostera marina when exposed to currents and waves[D]. Maryland: University of Maryland, 2009.
    [42]
    Puijalon S, Bouma T J, Van Groenendael J, et al. Clonal plasticity of aquatic plant species submitted to mechanical stress: escape versus resistance strategy[J]. Annals of Botany, 2008, 102(6): 989−996. doi: 10.1093/aob/mcn190
    [43]
    van de Ven C N, van der Heide T, Bouma T J, et al. Co-occurring intertidal ecosystem engineers with opposing growth strategies show opposite responses to environmental gradients during establishment[J]. Oikos, 2024, 2024(7): e10546. doi: 10.1111/oik.10546
    [44]
    张宏瑜. 红纤维虾形草对氮元素吸收能力的评价及其植株移植方法的优化[D]. 青岛: 中国海洋大学, 2021. (查阅网上资料, 未找到本条文献信息, 请确认)

    Zhang Hongyu. Evaluation of nitrogen absorption capacity and optimization of shoot transplanting methods of Phyllospadix iwatensis[D]. Qingdao: Ocean University of China, 2021.
    [45]
    程冉, 侯鑫, 王欢, 等. 红纤维虾形草移植植株存活、生长和生理对不同水动力条件的响应[J]. 渔业科学进展, 2022, 43(2): 21−31.

    Cheng Ran, Hou Xin, Wang Huan, et al. Survival, growth, and physiological responses of surfgrass transplants to different hydrodynamic regimes[J]. Progress in Fishery Sciences, 2022, 43(2): 21−31.
    [46]
    Wicks E C, Koch E W, O’Neil J M, et al. Effects of sediment organic content and hydrodynamic conditions on the growth and distribution of Zostera marina[J]. Marine Ecology Progress Series, 2009, 378: 71−80. doi: 10.3354/meps07885
    [47]
    Lamit N, Tanaka Y. Species-specific distribution of intertidal seagrasses along environmental gradients in a tropical estuary (Brunei Bay, Borneo)[J]. Regional Studies in Marine Science, 2019, 29: 100671. doi: 10.1016/j.rsma.2019.100671
    [48]
    Bradley M P, Stolt M H. Landscape-level seagrass–sediment relations in a coastal lagoon[J]. Aquatic Botany, 2006, 84(2): 121−128. doi: 10.1016/j.aquabot.2005.08.003
    [49]
    Zhang Qian, Liu Jie, Zhang Peidong, et al. Effect of silt and clay percentage in sediment on the survival and growth of eelgrass Zostera marina: transplantation experiment in Swan Lake on the eastern coast of Shandong Peninsula, China[J]. Aquatic Botany, 2015, 122: 15−19. doi: 10.1016/j.aquabot.2015.01.001
    [50]
    van der Heide T, Temmink R J M, Fivash G S, et al. Coastal restoration success via emergent trait-mimicry is context dependent[J]. Biological Conservation, 2021, 264: 109373. doi: 10.1016/j.biocon.2021.109373
    [51]
    吴晓晓. 鳗草应对水体浊度升高的响应过程与机理研究[D]. 青岛: 中国海洋大学, 2019.

    Wu Xiaoxiao. Studies on the response process and mechanism of eelgrass (Zostera marina L. ) to the increase of water turbidity[D]. Qingdao: Ocean University of China, 2019. (查阅网上资料, 未找到对应的英文翻译, 请确认)
    [52]
    Manzanera M, Alcoverro T, Tomas F, et al. Response of Posidonia oceanica to burial dynamics[J]. Marine Ecology Progress Series, 2011, 423: 47−56. doi: 10.3354/meps08970
    [53]
    Fonseca M S, Cahalan J A. A preliminary evaluation of wave attenuation by four species of seagrass[J]. Estuarine, Coastal and Shelf Science, 1992, 35(6): 565−576. doi: 10.1016/S0272-7714(05)80039-3
    [54]
    Carus J, Arndt C, Schröder B, et al. Using artificial seagrass for promoting positive feedback mechanisms in seagrass restoration[J]. Frontiers in Marine Science, 2021, 8: 546661. doi: 10.3389/fmars.2021.546661
    [55]
    Infantes E, Orfila A, Bouma T J, et al. Posidonia oceanica and Cymodocea nodosa seedling tolerance to wave exposure[J]. Limnology and Oceanography, 2011, 56(6): 2223−2232. doi: 10.4319/lo.2011.56.6.2223
    [56]
    Cabaço S, Santos R, Duarte C M. The impact of sediment burial and erosion on seagrasses: a review[J]. Estuarine, Coastal and Shelf Science, 2008, 79(3): 354−366. (查阅网上资料, 本条文献与第32条文献重复, 请确认)
    [57]
    Whitford L A, Schumacher G J. Effect of a current on respiration and mineral uptake in Spirogyra and Oedogonium[J]. Ecology, 1964, 45(1): 168−170. doi: 10.2307/1937120
    [58]
    Koch E W. Hydrodynamics, diffusion-boundary layers and photosynthesis of the seagrasses Thalassia testudinum and Cymodocea nodosa[J]. Marine Biology, 1994, 118(4): 767−776. doi: 10.1007/BF00347527
    [59]
    Jordan T L. Acclimation of marine macrophytes (Saccharina latissima and Zostera marina) to water flow[D]. Maryland: University of Maryland, 2008.
    [60]
    Fonseca M S, Fisher J S, Zieman J C, et al. Influence of the seagrass, Zostera marina L. , on current flow[J]. Estuarine, Coastal and Shelf Science, 1982, 15(4): 351−364.
    [61]
    Enríquez S, Rodríguez-Román A. Effect of water flow on the photosynthesis of three marine macrophytes from a fringing-reef lagoon[J]. Marine Ecology Progress Series, 2006, 323: 119−132. doi: 10.3354/meps323119
    [62]
    Loewe A, Einig W, Shi Lanbo, et al. Mycorrhiza formation and elevated CO2 both increase the capacity for sucrose synthesis in source leaves of spruce and aspen[J]. New Phytologist, 2000, 145(3): 565−574. doi: 10.1046/j.1469-8137.2000.00598.x
    [63]
    Silva J, Barrote I, Costa M M, et al. Physiological responses of Zostera marina and Cymodocea nodosa to light-limitation stress[J]. PLoS One, 2013, 8(11): e81058. doi: 10.1371/journal.pone.0081058
    [64]
    黄晓龙, 谢洪民, 魏伟伟, 等. 不同水深对挺水植物形态和生理指标的影响[J]. 环境科学研究, 2021, 34(11): 2706−2713.

    Huang Xiaolong, Xie Hongmin, Wei Weiwei, et al. Effect of different water depths on morphological and physiological traits of emergent plants[J]. Research of Environmental Sciences, 2021, 34(11): 2706−2713.
    [65]
    江志坚, 黄小平, 张景平. 环境胁迫对海草非结构性碳水化合物储存和转移的影响[J]. 生态学报, 2012, 32(19): 6242−6250. doi: 10.5846/stxb201108311275

    Jiang Zhijian, Huang Xiaoping, Zhang Jingping. Effect of environmental stress on non-structural carbohydrates reserves and transfer in seagrasses[J]. Acta Ecologica Sinica, 2012, 32(19): 6242−6250. doi: 10.5846/stxb201108311275
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (40) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return