Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Zhu Qiguang,Shen Zhen,Li Xiang, et al. Prediction of seawater dissolved oxygen concentration based on multi-buoy spatial multi-feature fusion[J]. Haiyang Xuebao,2025, 47(1):104–116 doi: 10.12284/hyxb2025028
Citation: Zhu Qiguang,Shen Zhen,Li Xiang, et al. Prediction of seawater dissolved oxygen concentration based on multi-buoy spatial multi-feature fusion[J]. Haiyang Xuebao,2025, 47(1):104–116 doi: 10.12284/hyxb2025028

Prediction of seawater dissolved oxygen concentration based on multi-buoy spatial multi-feature fusion

doi: 10.12284/hyxb2025028
  • Received Date: 2024-09-28
  • Rev Recd Date: 2024-12-18
  • Available Online: 2025-01-08
  • Publish Date: 2025-01-31
  • Dissolved oxygen concentration is one of the important indexes to measure seawater quality. In order to grasp the change of seawater quality in time and reduce the risk and loss of seawater pollution, it is very important to establish the prediction mechanism of marine water quality parameters. Therefore, this paper proposes a prediction model of dissolved oxygen concentration in seawater based on temporal and spatial information fusion of buoy Networks and Generative Adversarial Networks (GAN), which aims to integrate topological information of buoy networks in the monitoring area and realize multi-feature fusion of buoy sensors. The model uses the Graph Attention Mechanism (GAT) to mine the influence of different nearest neighbor points on the target node and calculate the weights of the adjacent nodes, so as to capture the spatio-temporal characteristics of the buoy data. The two-head attention mechanism and the two-time-scale Update Rule (TTUR) were used to optimize the GAN prediction network and the network training process, improve the training speed balance of the generated adversarial network, and improve the fitting effect of the generator network. The mean squared error, root mean squared error, mean absolute error and R-Square are used as evaluation indexes to compare the model prediction performance. The results show that the evaluation indexes of the proposed model are superior to other models, and can effectively mine the spatial information of multiple buoys. It overcomes the shortcomings of traditional methods in the prediction of dissolved oxygen concentration in seawater, such as low accuracy, inability to flexibly use historical spatial data, poor training stability and slow speed, and can provide important technical support for marine water quality monitoring and prediction.
  • [1]
    齐庆华, 蔡榕硕, 颜秀花. 气候变化与我国海洋灾害风险治理探讨[J]. 海洋通报, 2019, 38(4): 361−367.

    Qi Qinghua, Cai Rongshuo, Yan Xiuhua. Discussion on climate change and marine disaster risk governance in the coastal China seas[J]. Marine Science Bulletin, 2019, 38(4): 361−367.
    [2]
    Kisi O, Alizamir M, Gorgij A D. Dissolved oxygen prediction using a new ensemble method[J]. Environmental Science and Pollution Research, 2020, 27(9): 9589−9603. doi: 10.1007/s11356-019-07574-w
    [3]
    Li Yanni, Yan Shiqiang, Shi Hongda, et al. Hydrodynamic analysis of a novel multi-buoy wind-wave energy system[J]. Renewable Energy, 2023, 219: 119477. doi: 10.1016/j.renene.2023.119477
    [4]
    Liu Shixuan, Song Miaomiao, Chen Shizhe, et al. An intelligent modeling framework to optimize the spatial layout of ocean moored buoy observing networks[J]. Frontiers in Marine Science, 2023, 10: 1134418. doi: 10.3389/fmars.2023.1134418
    [5]
    Jin Junchen, Rong Dingding, Zhang Tong, et al. A GAN-based short-term link traffic prediction approach for urban road networks under a parallel learning framework[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 16185−16196. doi: 10.1109/TITS.2022.3148358
    [6]
    杜先君, 李河. 基于集成GCN-Transformer网络的ENSO预测模型[J]. 海洋学报, 2023, 45(12): 156−165.

    Du Xianjun, Li He. ENSO prediction model based on integrated GCN-Transformer network[J]. Haiyang Xuebao, 2023, 45(12): 156−165.
    [7]
    Veličković P, Cucurull G, Casanova A, et al. Graph Attention Networks[C]//International Conference on Learning Representations. 2018.
    [8]
    Li Wenjing, Fang Huaiyang, Qin Guangxiong, et al. Concentration estimation of dissolved oxygen in Pearl River Basin using input variable selection and machine learning techniques[J]. Science of the Total Environment, 2020, 731: 139099. doi: 10.1016/j.scitotenv.2020.139099
    [9]
    Wu Junhao, Wang Zhaocai, Dong Jinghan, et al. Multi-step ahead dissolved oxygen concentration prediction based on knowledge guided ensemble learning and explainable artificial intelligence[J]. Journal of Hydrology, 2024, 636: 131297. doi: 10.1016/j.jhydrol.2024.131297
    [10]
    Liu Yeqi, Gong Chuanyang, Yang Ling, et al. DSTP-RNN: a dual-stage two-phase attention-based recurrent neural network for long-term and multivariate time series prediction[J]. Expert Systems with Applications, 2020, 143: 113082. doi: 10.1016/j.eswa.2019.113082
    [11]
    Yue Weihao, Xu Yongsheng, Xiang Liang, et al. Prediction of 3-D ocean temperature based on self-attention and predictive RNN[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 1501305.
    [12]
    石绥祥, 王蕾, 余璇, 等. 长短期记忆神经网络在叶绿素a浓度预测中的应用[J]. 海洋学报, 2020, 42(2): 134−142. doi: 10.3969/j.issn.0253-4193.2020.02.014

    Shi Suixiang, Wang Lei, Yu Xuan, et al. Application of long term and short term memory neural network in prediction of chlorophyll a concentration[J]. Haiyang Xuebao, 2020, 42(2): 134−142. doi: 10.3969/j.issn.0253-4193.2020.02.014
    [13]
    Jia Xiaoyan, Ji Qiyan, Han Lei, et al. Prediction of sea surface temperature in the East China Sea based on LSTM neural network[J]. Remote Sensing, 2022, 14(14): 3300. doi: 10.3390/rs14143300
    [14]
    张宇, 许大志, 俞胜宾, 等. 基于多尺度深度学习对南海海表温度预报的研究[J]. 海洋学报, 2024, 46(5): 27−36. doi: 10.12284/hyxb2024034

    Zhang Yu, Xu Dazhi, Yu Shengbin, et al. Forecast of sea surface temperature in the South China Sea based on multi-scale deep learning model[J]. Haiyang Xuebao, 2024, 46(5): 27−36. doi: 10.12284/hyxb2024034
    [15]
    Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal: MIT Press, 2014: 2672−2680.
    [16]
    Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139−144. doi: 10.1145/3422622
    [17]
    Deng Jiaxiang, Deng Yong, Cheong K H. Combining conflicting evidence based on Pearson correlation coefficient and weighted graph[J]. International Journal of Intelligent Systems, 2021, 36(12): 7443−7460. doi: 10.1002/int.22593
    [18]
    Ibrahim A, Ismail A, Juahir H, et al. Water quality modelling using principal component analysis and artificial neural network[J]. Marine Pollution Bulletin, 2023, 187: 114493. doi: 10.1016/j.marpolbul.2022.114493
    [19]
    Mai Gengchen, Xuan Yao, Zuo Wenyun, et al. Sphere2Vec: a general-purpose location representation learning over a spherical surface for large-scale geospatial predictions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 202: 439−462. doi: 10.1016/j.isprsjprs.2023.06.016
    [20]
    Scarselli F, Gori M, Tsoi A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61−80. doi: 10.1109/TNN.2008.2005605
    [21]
    Wang Xiaoqi, Yen K, Hu Yifan, et al. DeepGD: a deep learning framework for graph drawing using GNN[J]. IEEE Computer Graphics and Applications, 2021, 41(5): 32−44. doi: 10.1109/MCG.2021.3093908
    [22]
    Wang Dujuan, Zhu Jiacheng, Yin Yunqiang, et al. Dynamic travel time prediction with spatiotemporal features: using a GNN-based deep learning method[J]. Annals of Operations Research, 2024, 340(1): 571−591. doi: 10.1007/s10479-023-05260-2
    [23]
    Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[C]//International Conference on Learning Representations, 2017.
    [24]
    Derr T, Ma Yao, Tang Jiliang. Signed graph convolutional networks[C]//2018 IEEE International Conference on Data Mining (ICDM). Singapore: IEEE, 2018: 929−934.
    [25]
    Polamuri S R, Srinivas D K, Mohan D A K. Multi-model generative adversarial network hybrid prediction algorithm (MMGAN-HPA) for stock market prices prediction[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34(9): 7433−7444. doi: 10.1016/j.jksuci.2021.07.001
    [26]
    Zhang Jianguang, Zhang Xuyang, Yang Jianfeng, et al. Deep LSTM and GAN based short-term load forecasting method at the zone level[C]//2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). Fukuoka: IEEE, 2020: 613−618.
    [27]
    Festag S, Spreckelsen C. Medical multivariate time series imputation and forecasting based on a recurrent conditional Wasserstein GAN and attention[J]. Journal of Biomedical Informatics, 2023, 139: 104320. doi: 10.1016/j.jbi.2023.104320
    [28]
    Gulrajani I, Ahmed F, Arjovsky M, et al. Improved training of wasserstein GANS[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc. , 2017: 5769−5779.
    [29]
    Zhang Chenhan, Yu J J Q, Liu Yi. Spatial-temporal graph attention networks: a deep learning approach for traffic forecasting[J]. IEEE Access, 2019, 7: 166246−166256. doi: 10.1109/ACCESS.2019.2953888
    [30]
    Fang Fang, Zhang Pengpeng, Zhou Bo, et al. Atten-GAN: pedestrian trajectory prediction with GAN based on attention mechanism[J]. Cognitive Computation, 2022, 14(6): 2296−2305. doi: 10.1007/s12559-022-10029-z
    [31]
    Bynagari N B. GANs trained by a two time-scale update rule converge to a local Nash equilibrium[J]. Asian Journal of Applied Science and Engineering, 2019, 8(1): 25−34. doi: 10.18034/ajase.v8i1.9
    [32]
    Zhang Kang, Zhong Guoqiang, Dong Junyu, et al. Stock market prediction based on generative adversarial network[J]. Procedia Computer Science, 2019, 147: 400−406. doi: 10.1016/j.procs.2019.01.256
    [33]
    Zha Wenshu, Liu Yuping, Wan Yujin, et al. Forecasting monthly gas field production based on the CNN-LSTM model[J]. Energy, 2022, 260: 124889. doi: 10.1016/j.energy.2022.124889
    [34]
    Yu Jingxin, Zhang Xin, Xu Linlin, et al. A hybrid CNN-GRU model for predicting soil moisture in maize root zone[J]. Agricultural Water Management, 2021, 245: 106649. doi: 10.1016/j.agwat.2020.106649
  • Relative Articles

    [1]Tang Jingrong, Wei Qinsheng, Zhao Yuhang, Sun Xia, Xin Ming, Xie Linping, Wang Baodong. Distributions of dissolved oxygen and hypoxic characteristics in the Bohai Sea and the northern Yellow Sea during the late summer-early autumn in 2021[J]. Haiyang Xuebao. doi: 10.12284/hyxb2025032
    [2]Zhao Zihan, Song Guisheng, Zhao Liang. Characteristics of dissolved oxygen and pH variations in summer off the Qinhuangdao[J]. Haiyang Xuebao, 2020, 42(10): 144-154. doi: 10.3969/j.issn.0253-4193.2020.10.014
    [3]Shi Yingni, Zhang Tinglu, Shi Lijian, Hu Xiaohua, Nan Mingxing. Objective analysis for merging multisensory chlorophyll a data[J]. Haiyang Xuebao, 2016, 38(3): 82-87. doi: 10.3969/j.issn.0253-4193.2016.03.008
    [4]YANG Yang, MA Yuan, SHI Huaming. Characteristics of dissolved oxygen and its physical and chemistry influence factors in the slope break zone in northern South China Sea[J]. Haiyang Xuebao, 2013, 35(1): 104-110. doi: 10.3969/j.issn.0253-4193.2013.01.012
    [5]RAN Xiang-bin, ZANG Jia-ye, WEI Qin-sheng, LIU Wei, GUO Jing-song. Characteristics of dissolved oxygen and its influencing factors in the Rushan Bay mouth and its adjacent waters[J]. Haiyang Xuebao, 2011, 33(4): 173-180.
    [6]ZANG Lu, SHI Xiao-yong, ZHANG Chuan-song. Seasonal distribution features of nutrients and DO at 37°N transect[J]. Haiyang Xuebao, 2009, 31(2): 78-85.
    [7]LIN Hong-ying, HAN Wu-ying, WANG Han-kui, CHENG Sai-wei. Seasonal features of the dissolved oxygen maximum in vertical distribution in the Nansha Islands[J]. Haiyang Xuebao, 2001, 23(5): 65-69.
    [8]Wang Zengfang, Zhang Qin, Lü Haiyan, Lu Yong, Hu Chuanyu, Zeng Jiangning. The simple model of dissolved oxygen about red tide forecast in the Changjiang Estuary[J]. Haiyang Xuebao, 2000, 22(4): 125-129.
    [9]Wang Baodong, Liu Feng, Wang Guiyun. Horizontal distributions and seasonal variations of dissolved oxygen in the southern Huanghai Sea[J]. Haiyang Xuebao, 1999, 21(4): 47-53.
    [10]Wang Baodong, Wang Guiyun, Chung Chang-Soo, Yang Dong-Beom. Features in vertical profiles of dissolved oxygen in the southern Huanghai Sea[J]. Haiyang Xuebao, 1999, 21(5): 72-77.
    [19]Zhang Rongkun, Luo Yinghua, Wan Zhen, Cai Weiping. RESEARCH ON DETERMINATION OF DISSOLVED OXYGEN IN SEAWATER[J]. Haiyang Xuebao, 1980, 2(4): 71-85.
    [20]Gu Hongkan. THE MAXIMUM VALUE OF DISSOLVED OXYGEN IN ITS VERTICAL DISTRIBUTION IN YELLOW SEA[J]. Haiyang Xuebao, 1980, 2(2): 70-79.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.5 %FULLTEXT: 20.5 %META: 67.0 %META: 67.0 %PDF: 12.5 %PDF: 12.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.7 %其他: 5.7 %上海: 2.3 %上海: 2.3 %北京: 5.7 %北京: 5.7 %南京: 4.5 %南京: 4.5 %哥伦布: 0.6 %哥伦布: 0.6 %嘉兴: 0.6 %嘉兴: 0.6 %天津: 2.8 %天津: 2.8 %宁德: 0.6 %宁德: 0.6 %宁波: 0.6 %宁波: 0.6 %山东省: 1.1 %山东省: 1.1 %平顶山: 0.6 %平顶山: 0.6 %广州: 8.5 %广州: 8.5 %张家口: 7.4 %张家口: 7.4 %成都: 0.6 %成都: 0.6 %扬州: 1.7 %扬州: 1.7 %无锡: 1.7 %无锡: 1.7 %杭州: 1.7 %杭州: 1.7 %武汉: 0.6 %武汉: 0.6 %海口: 0.6 %海口: 0.6 %海牙: 0.6 %海牙: 0.6 %漯河: 1.1 %漯河: 1.1 %玉溪: 0.6 %玉溪: 0.6 %珠海: 1.1 %珠海: 1.1 %秦皇岛: 8.0 %秦皇岛: 8.0 %芒廷维尤: 23.9 %芒廷维尤: 23.9 %苏州: 3.4 %苏州: 3.4 %莆田: 0.6 %莆田: 0.6 %西宁: 2.3 %西宁: 2.3 %赣州: 1.1 %赣州: 1.1 %运城: 0.6 %运城: 0.6 %郑州: 1.1 %郑州: 1.1 %重庆: 0.6 %重庆: 0.6 %长沙: 1.7 %长沙: 1.7 %阿比让: 1.1 %阿比让: 1.1 %青岛: 4.5 %青岛: 4.5 %其他上海北京南京哥伦布嘉兴天津宁德宁波山东省平顶山广州张家口成都扬州无锡杭州武汉海口海牙漯河玉溪珠海秦皇岛芒廷维尤苏州莆田西宁赣州运城郑州重庆长沙阿比让青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article views (117) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return