Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 47 Issue 12
Dec.  2025
Turn off MathJax
Article Contents
Wang Jiacheng,Jiang Chenjuan,Li Weihua, et al. Effects of salinity stratification on turbulence in the South Passage of the Changjiang River Estuary[J]. Haiyang Xuebao,2025, 47(12):25–34 doi: 10.12284/hyxb20250133
Citation: Wang Jiacheng,Jiang Chenjuan,Li Weihua, et al. Effects of salinity stratification on turbulence in the South Passage of the Changjiang River Estuary[J]. Haiyang Xuebao,2025, 47(12):25–34 doi: 10.12284/hyxb20250133

Effects of salinity stratification on turbulence in the South Passage of the Changjiang River Estuary

doi: 10.12284/hyxb20250133
  • Received Date: 2025-11-11
  • Rev Recd Date: 2025-12-17
  • Available Online: 2026-01-06
  • Publish Date: 2025-12-31
  • Based on the measured high-frequency turbulence and salinity profile data from the South Passage of the Changjiang River Estuary in autumn 2020, how water salinity stratification modulates the turbulence viscosity coefficient, drag coefficient, and vertical velocity energy spectrum is quantified, to assess its influence on water-column turbulence. The observation station generally exhibits periodic stratification, with gradual transitions from mixing to stratification during the flood current, and from stratification to mixing during the ebb current. Salinity stratification significantly suppresses the intensity of turbulence in the bottom layer, leading to a decrease in the drag coefficient and viscosity coefficient of the bottom layer. Furthermore, as the height above the bed increases, the reduction in turbulence parameters caused by stratification becomes more pronounced. Spectral analyses of vertical velocity time series at multiple elevations indicate that stratification disproportionately damps low-frequency, large-scale eddies, and that the suppression strengthens away from the bed. Vertically, stratification reshapes the vertical eddy viscosity structure by lowering both the peak and the mean values, shifting the position where the peak occurs downward, and accelerating the decay above the peak, leading to an overall reduction in turbulence. The degree of turbulence suppression is negatively correlated with the height of the stratified region and positively correlated with the intensity of stratification.
  • loading
  • [1]
    Tennekes H, Lumley J L. A First Course in Turbulence[M]. Cambridge: The MIT Press, 1972.
    [2]
    Townsend A A. The Structure of Turbulent Shear Flow[M]. Cambridge: Cambridge University Press, 1976.
    [3]
    Kolmogorov A N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers[J]. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 1991, 434(1890): 9−13. doi: 10.1007/978-94-011-3030-1_45
    [4]
    Simpson J H, Hunter J R. Fronts in the irish sea[J]. Nature, 1974, 250(5465): 404−406. doi: 10.1038/250404a0
    [5]
    Simpson J H, Allen C M, Morris N C G. Fronts on the continental shelf[J]. Journal of Geophysical Research: Oceans, 1978, 83(C9): 4607−4614. doi: 10.1029/JC083iC09p04607
    [6]
    Simpson J H. The shelf-sea fronts: implications of their existence and behaviour[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1981, 302(1472): 531−546. doi: 10.1098/rsta.1981.0181
    [7]
    Geyer W R. The importance of suppression of turbulence by stratification on the estuarine turbidity maximum[J]. Estuaries, 1993, 16(1): 113−125. doi: 10.2307/1352769
    [8]
    Green M O, Mccave I N. Seabed drag coefficient under tidal currents in the eastern Irish Sea[J]. Journal of Geophysical Research: Oceans, 1995, 100(C8): 16057−16069. doi: 10.1029/95JC01381
    [9]
    Scully M E, Friedrichs C T. The influence of asymmetries in overlying stratification on near-bed turbulence and sediment suspension in a partially mixed estuary[J]. Ocean Dynamics, 2003, 53(3): 208−219. doi: 10.1007/s10236-003-0034-y
    [10]
    Soulsby R L, Dyer K R. The form of the near-bed velocity profile in a tidally accelerating flow[J]. Journal of Geophysical Research: Oceans, 1981, 86(C9): 8067−8074.
    [11]
    Scully M E, Geyer W R. The role of advection, straining, and mixing on the tidal variability of estuarine stratification[J]. Journal of Physical Oceanography, 2012, 42(5): 855−868. doi: 10.1175/JPO-D-10-05010.1
    [12]
    Terray E A, Donelan M A, Agrawal Y C, et al. Estimates of kinetic energy dissipation under breaking waves[J]. Journal of Physical Oceanography, 1996, 26(5): 792−807.
    [13]
    Guerra M, Thomson J. Turbulence measurements from five-beam acoustic Doppler current profilers[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(6): 1267−1284. doi: 10.1175/JTECH-D-16-0148.1
    [14]
    王寇, 李博, 李爱国, 等. 夏季长江口及其邻近海域湍流特征分析[J]. 海洋学报, 2021, 43(11): 22−31.

    Wang Kou, Li Bo, Li Aiguo, et al. Characteristics of turbulence in the Changjiang River Estuary and its adjacent waters in summer[J]. Haiyang Xuebao, 2021, 43(11): 22−31.
    [15]
    田静, 张凡, 李任之, 等. 长江口湍流剖面的观测与分析[J]. 海洋与湖沼, 2023, 54(5): 1295−1307. doi: 10.11693/hyhz20230200023

    Tian Jing, Zhang Fan, Li Renzhi, et al. Observation and analysis of turbulence vertical profile in the Changjiang River Estuary[J]. Oceanologia et Limnologia Sinica, 2023, 54(5): 1295−1307. doi: 10.11693/hyhz20230200023
    [16]
    Li Renzhi, Voulgaris G, Wang Yaping. Turbulence structure and burst events observed in a tidally induced bottom boundary layer[J]. Journal of Geophysical Research: Oceans, 2022, 127(6): e2021JC018036. doi: 10.1029/2021JC018036
    [17]
    鲁远征, 吴加学, 刘欢. 河口底边界层湍流观测后处理技术方法分析[J]. 海洋学报, 2012, 34(5): 39−49.

    Lu Yuanzheng, Wu Jiaxue, Liu Huan. An integrated post-processing technique for turbulent flows in estuarine bottom boundary layer[J]. Haiyang Xuebao, 2012, 34(5): 39−49.
    [18]
    Kim S C, Friedrichs C T, Maa J P Y, et al. Estimating bottom stress in tidal boundary layer from acoustic Doppler velocimeter data[J]. Journal of Hydraulic Engineering, 2000, 126(6): 399−406. doi: 10.1061/(ASCE)0733-9429(2000)126:6(399)
    [19]
    Cleveland W S. Robust locally weighted regression and smoothing scatterplots[J]. Journal of the American Statistical Association, 1979, 74(368): 829−836. doi: 10.1080/01621459.1979.10481038
    [20]
    Perry A E, Chong M S. On the mechanism of wall turbulence[J]. Journal of Fluid Mechanics, 1982, 119: 173−217. doi: 10.1017/S0022112082001311
    [21]
    Dewey K R. Coastal and Estuarine Sediment Dynamics[M]. New York: John Wiley & Sons Ltd, 1986.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (71) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return