| Citation: | Wang Yuhong,You Haiyang,Bai Jinku, et al. Numerical study on the calculation of hydrodynamic coefficient and judgment of motion stability of submersibles[J]. Haiyang Xuebao,2025, 47(12):114–125 doi: 10.12284/hyxb20250131 |
| [1] |
朱俊江, 孙宗勋, 练树民, 等. 全球有缆海底观测网概述[J]. 热带海洋学报, 2017, 36(3): 20−33.
Zhu Junjiang, Sun Zongxun, Lian Shumin, et al. Review on cabled seafloor observatories in the world[J]. Journal of Tropical Oceanography, 2017, 36(3): 20−33.
|
| [2] |
李风华, 路艳国, 王海斌, 等. 海底观测网的研究进展与发展趋势[J]. 中国科学院院刊, 2019, 34(3): 321−330. doi: 10.16418/j.issn.1000-3045.2019.03.010
Li Fenghua, Lu Yanguo, Wang Haibin, et al. Research progress and development trend of seafloor observation network[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(3): 321−330. doi: 10.16418/j.issn.1000-3045.2019.03.010
|
| [3] |
漆随平, 厉运周. 海洋环境监测技术及仪器装备的发展现状与趋势[J]. 山东科学, 2019, 32(5): 21−30. doi: 10.3976/j.issn.1002-4026.2019.05.002
Qi Suiping, Li Yunzhou. A review of the development and current situation of marine environment observation technology and instruments[J]. Shandong Science, 2019, 32(5): 21−30. doi: 10.3976/j.issn.1002-4026.2019.05.002
|
| [4] |
An Xinyu, Chen Ying, Huang Haocai. Parametric design and optimization of the profile of autonomous underwater helicopter based on NURBS[J]. Journal of Marine Science and Engineering, 2021, 9(6): 668. doi: 10.3390/jmse9060668
|
| [5] |
周晶, 司玉林, 林渊, 等. 海底AUV关键技术综述[J]. 海洋学报, 2023, 45(10): 1−12. doi: 10.12284/hyxb2023153
Zhou Jing, Si Yulin, Lin Yuan, et al. A review of subsea AUV technology[J]. Haiyang Xuebao, 2023, 45(10): 1−12. doi: 10.12284/hyxb2023153
|
| [6] |
Wang Shuxin, Sun Xiujun, Wang Yanhui, et al. Dynamic modeling and motion simulation for a winged hybrid-driven underwater glider[J]. China Ocean Engineering, 2011, 25(1): 97−112. doi: 10.1007/s13344-011-0008-7
|
| [7] |
Wang Gongbo, Wang Yanhui, Yang Ming, et al. Design and motion performance of a novel variable-area tail for underwater gliders[J]. IEEE/ASME Transactions on Mechatronics, 2025, 30(3): 2132−2143. doi: 10.1109/TMECH.2024.3424308
|
| [8] |
Jagadeesh P, Murali K, Idichandy V G. Experimental investigation of hydrodynamic force coefficients over AUV hull form[J]. Ocean Engineering, 2009, 36(1): 113−118. doi: 10.1016/j.oceaneng.2008.11.008
|
| [9] |
Mitra A, Panda J P, Warrior H V. Experimental and numerical investigation of the hydrodynamic characteristics of Autonomous Underwater Vehicles over sea-beds with complex topography[J]. Ocean Engineering, 2020, 198: 106978. doi: 10.1016/j.oceaneng.2020.106978
|
| [10] |
Mitra A, Panda J P, Warrior H V. The effects of free stream turbulence on the hydrodynamic characteristics of an AUV hull form[J]. Ocean Engineering, 2019, 174: 148−158. doi: 10.1016/j.oceaneng.2019.01.039
|
| [11] |
Chen Chenwei, Jiang Yong, Huang Haocai, et al. Computational fluid dynamics study of the motion stability of an autonomous underwater helicopter[J]. Ocean Engineering, 2017, 143: 227−239. doi: 10.1016/j.oceaneng.2017.07.020
|
| [12] |
Chen Chenwei, Chen Ying, Cai Qianwen. Hydrodynamic-interaction analysis of an autonomous underwater hovering vehicle and ship with wave effects[J]. Symmetry, 2019, 11(10): 1213. doi: 10.3390/sym11101213
|
| [13] |
Chen Chenwei, Lu Yifan. Computational fluid dynamics study of water entry impact forces of an airborne-launched, axisymmetric, disk-type autonomous underwater hovering vehicle[J]. Symmetry, 2019, 11(9): 1100. doi: 10.3390/sym11091100
|
| [14] |
Lin Yuan, Huang Yue, Zhu Hai, et al. Simulation study on the hydrodynamic resistance and stability of a disk-shaped autonomous underwater helicopter[J]. Ocean Engineering, 2021, 219: 108385. doi: 10.1016/j.oceaneng.2020.108385
|
| [15] |
Ayyangar V B S, Krishnankutty P, Korulla M, et al. Stability analysis of a positively buoyant underwater vehicle in vertical plane for a level flight at varying buoyancy, BG and speeds[J]. Ocean Engineering, 2018, 148: 331−348. doi: 10.1016/j.oceaneng.2017.11.030
|
| [16] |
Wei Tongjin, Lu Di, Zeng Zheng, et al. Trans-media kinematic stability analysis for hybrid unmanned aerial underwater vehicle[J]. Journal of Marine Science and Engineering, 2022, 10(2): 275. doi: 10.3390/jmse10020275
|
| [17] |
Minnick L M. A parametric model for predicting submarine dynamic stability in early stage design[D]. Blacksburg: Virginia Tech, 2006.
|
| [18] |
Woolsey C A. Review of marine control systems: guidance, navigation, and control of ships, rigs and underwater vehicles[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(3): 574−575. doi: 10.2514/1.17190
|
| [19] |
李殿璞. 船舶运动与建模[M]. 2版. 北京: 国防工业出版社, 2008.
Li Dianpu. Ship Motion and Modeling[M]. 2nd ed. Beijing: National Defense Industry Press, 2008.
|
| [20] |
Chen C W, Kouh J S, Tsai J F. Maneuvering modeling and simulation of AUV dynamic systems with Euler-Rodriguez quaternion method[J]. China Ocean Engineering, 2013, 27(3): 403−416. doi: 10.1007/s13344-013-0035-7
|
| [21] |
Chen Chenwei, Kouh J S, Tsai J F. Modeling and simulation of an AUV simulator with guidance system[J]. IEEE Journal of Oceanic Engineering, 2013, 38(2): 211−225. doi: 10.1109/JOE.2012.2220236
|
| [22] |
Fossen T I. Marine Control Systems Guidance, Navigation, and Control of Ships, Rigs and Underwater Vehicles[M]. Trondheim: Marine Cybernetics, 2002.
|
| [23] |
Phillips A B, Turnock S R, Furlong M. The use of computational fluid dynamics to aid cost-effective hydrodynamic design of autonomous underwater vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2010, 224(4): 239−254. doi: 10.1243/14750902JEME199
|
| [24] |
Hu Junming, Zhang Yanru, Xu Gang, et al. Numerical analysis of hydrodynamic performance of biomimetic flapping foils based on the RANS method[J]. Journal of Intelligent & Fuzzy Systems, 2020, 38(6): 7553−7562.
|
| [25] |
Rattanasiri P, Wilson P A, Phillips A B. Numerical investigation of a pair of self-propelled AUVs operating in tandem[J]. Ocean Engineering, 2015, 100: 126−137. doi: 10.1016/j.oceaneng.2015.04.031
|
| [26] |
Shojaeefard M H, Khorampanahi A, Mirzaei M. RANS study of Strouhal number effects on the stability derivatives of an autonomous underwater vehicle[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(3): 124. doi: 10.1007/s40430-018-0976-0
|
| [27] |
Sitaraman J, Floros M, Wissink A M, et al. Parallel unsteady overset mesh methodology for a multi-solver paradigm with adaptive Cartesian grids[C]//Proceedings of the 26th AIAA Applied Aerodynamics Conference. Honolulu: AIAA, 2008.
|
| [28] |
Phillips A, Furlong M, Turnock S R. The use of computational fluid dynamics to assess the hull resistance of concept autonomous underwater vehicles[C]//Proceedings of the OCEANS 2007-Europe. Aberdeen: IEEE, 2007: 1−6.
|