Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 47 Issue 12
Dec.  2025
Turn off MathJax
Article Contents
Zheng Mengke,Fang Wei. A cuboid attention-based IOD prediction model[J]. Haiyang Xuebao,2025, 47(12):126–135 doi: 10.12284/hyxb20250127
Citation: Zheng Mengke,Fang Wei. A cuboid attention-based IOD prediction model[J]. Haiyang Xuebao,2025, 47(12):126–135 doi: 10.12284/hyxb20250127

A cuboid attention-based IOD prediction model

doi: 10.12284/hyxb20250127
  • Received Date: 2025-09-13
  • Rev Recd Date: 2025-12-12
  • Available Online: 2025-08-21
  • Publish Date: 2025-12-31
  • The Indian Ocean Dipole (IOD) is the dominant climate mode in the tropical Indian Ocean, characterized by an east–west dipole pattern in sea-surface temperature anomalies that exerts substantial influence on regional and global climate variability. Current IOD forecasting methods predominantly rely on multivariate coupled or traditional statistical models, which pose significant challenges such as high computational complexity and multivariate noise interference. To address these challenges, this study proposes a cuboid attention-based IOD prediction model(CAIPM). The model takes sea surface temperature anomalies as the sole input variable, incorporates a Spatio-Temporal Gradient Enhancement Module (STGEM), which integrates sliding windows, temporal difference, and spatial convolution operations to enhance spatiotemporal feature extraction. By effectively capturing spatiotemporal dependencies within the Sea Surface Temperature Anomaly (SSTA) field through a cuboid attention mechanism, it directly outputs future spatiotemporal SSTA predictions, from which the IOD index is subsequently calculated. Experimental results demonstrate that the CAIPM significantly outperforms traditional statistical methods and current mainstream deep learning models in predicting the IOD index. Specifically, for a 12-month lead prediction, the Pearson correlation coefficient (PCC) of CAIPM is 32%, 22%, 16%, and 6% higher than that of the CNN, CNN-LSTM, TCN, and ConvLSTM models, respectively.
  • loading
  • [1]
    郑梦轲, 方巍, 张霄智. 深度学习在印度洋偶极子预测中的应用研究综述[J]. 海洋学研究, 2024, 42(3): 51−63 doi: 10.3969/j.issn.1001-909X.2024.03.004

    Zheng Mengke, Fang Wei, Zhang Xiaozhi. Review of application of deep learning in Indian Ocean Dipole prediction[J]. Journal of Marine Sciences, 2024, 42(3): 51−63. doi: 10.3969/j.issn.1001-909X.2024.03.004
    [2]
    滕宇威, 张文君, 刘超, 等. ENSO空间形态变异对ENSO-IOD关系年代际减弱的可能作用[J]. 气象学报, 2020, 78(2): 210−220.

    Teng Yuwei, Zhang Wenjun, Liu Chao, et al. Possible role of ENSO spatial pattern variation in interdecadal weakening of ENSO-IOD relationship[J]. Acta Meteorologica Sinica, 2020, 78(2): 210−220.
    [3]
    An S I, Park H J, Kim S K, et al. Main drivers of Indian Ocean Dipole asymmetry revealed by a simple IOD model[J]. npj Climate and Atmospheric Science, 2023, 6(1): 93. doi: 10.1038/s41612-023-00422-2
    [4]
    Bahiyah A, Wirasatriya A, Mardiansyah W, et al. Massive SST-front anomaly in the tip of Sumatra waters triggered by extreme positive IOD 2019 event[J]. International Journal of Remote Sensing, 2024, 45(23): 8919−8936. doi: 10.1080/01431161.2023.2268821
    [5]
    Sun Shuangwen, Fang Yue, Zu Yongcan, et al. Increased occurrences of early Indian Ocean Dipole under global warming[J]. Science Advances, 2022, 8(47): eadd6025. doi: 10.1126/sciadv.add6025
    [6]
    Magee A D, Kiem A S. Using indicators of ENSO, IOD, and SAM to improve lead time and accuracy of tropical cyclone outlooks for Australia[J]. Journal of Applied Meteorology and Climatology, 2020, 59(11): 1901−1917. doi: 10.1175/JAMC-D-20-0131.1
    [7]
    Roy I, Mliwa M, Troccoli A. Important drivers of East African monsoon variability and improving rainy season onset prediction[J]. Natural Hazards, 2024, 120(1): 429−445. doi: 10.1007/s11069-023-06223-3
    [8]
    Cherchi A, Terray P, Ratna S B, et al. Indian Ocean Dipole influence on Indian summer monsoon and ENSO: a review[M]//Chowdary J, Parekh A, Gnanaseelan C. Indian Summer Monsoon Variability. Amsterdam: Elsevier, 2021: 157−182.
    [9]
    Cai Wenju, Yang Kai, Wu Lixin, et al. Opposite response of strong and moderate positive Indian Ocean Dipole to global warming[J]. Nature Climate Change, 2021, 11(1): 27−32. doi: 10.1038/s41558-020-00943-1
    [10]
    Iskandar I, Lestari D O, Saputra A D, et al. Extreme positive Indian Ocean Dipole in 2019 and its impact on Indonesia[J]. Sustainability, 2022, 14(22): 15155. doi: 10.3390/su142215155
    [11]
    Saji N H, Goswami B N, Vinayachandran P N, et al. A dipole mode in the tropical Indian Ocean[J]. Nature, 1999, 401(6751): 360−363.
    [12]
    Cai Wenju, Santoso A, Wang Guojian, et al. Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming[J]. Nature, 2014, 510(7504): 254−258. doi: 10.1038/nature13327
    [13]
    Sarkar P P, Janardhan P, Roy P. A novel deep neural network model approach to predict Indian Ocean dipole and Equatorial Indian Ocean oscillation indices[J]. Dynamics of Atmospheres and Oceans, 2021, 96: 101266. doi: 10.1016/j.dynatmoce.2021.101266
    [14]
    Feng Yuan, Li Chen, Sun Tianying. The study based on the deep learning for Indian Ocean Dipole (IOD) index predication[C]//Proceedings of the ACM Turing Award Celebration Conference – China. Hefei: Association for Computing Machinery, 2021: 23−27.
    [15]
    Feng Ming, Boschetti F, Ling Fenghua, et al. Predictability of sea surface temperature anomalies at the eastern pole of the Indian Ocean Dipole—using a convolutional neural network model[J]. Frontiers in Climate, 2022, 4: 925068. doi: 10.3389/fclim.2022.925068
    [16]
    Liu Jun, Tang Youmin, Wu Yanling, et al. Forecasting the Indian Ocean Dipole with deep learning techniques[J]. Geophysical Research Letters, 2021, 48(20): e2021GL094407. doi: 10.1029/2021GL094407
    [17]
    Ling Fenghua, Luo Jingjia, Li Yue, et al. Multi-task machine learning improves multi-seasonal prediction of the Indian Ocean Dipole[J]. Nature Communications, 2022, 13(1): 7681. doi: 10.1038/s41467-022-35412-0
    [18]
    方巍, 张霄智, 齐媚涵. MEPM模型: 基于深度学习的多变量厄尔尼诺−南方涛动预测模型[J]. 地球科学与环境学报, 2024, 46(3): 285−297. doi: 10.19814/j.jese.2023.08029

    Fang Wei, Zhang Xiaozhi, Qi Meihan. MEPM: multivariate ENSO prediction model based on deep learning[J]. Journal of Earth Sciences and Environment, 2024, 46(3): 285−297. doi: 10.19814/j.jese.2023.08029
    [19]
    张霄智, 方巍, 王淏西. 基于Swin-Transformer和时空融合注意力机制的ENSO预测[J]. 海洋学报, 2024, 46(12): 111−121. doi: 10.12284/hyxb2024127

    Zhang Xiaozhi, Fang Wei, Wang Haoxi. ENSO prediction based on Swin-Transformer and spatio-temporal fusion attention mechanism[J]. Haiyang Xuebao, 2024, 46(12): 111−121. doi: 10.12284/hyxb2024127
    [20]
    周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 2019, 15(5): 445−456.

    Zhou Tianjun, Zou Liwei, Chen Xiaolong. Commentary on the coupled model intercomparison project phase 6 (CMIP6)[J]. Climate Change Research, 2019, 15(5): 445−456.
    [21]
    Carton J A, Giese B S. A reanalysis of ocean climate using simple ocean data assimilation (SODA)[J]. Monthly Weather Review, 2008, 136(8): 2999−3017. doi: 10.1175/2007MWR1978.1
    [22]
    Saha S, Nadiga S, Thiaw C, et al. The NCEP climate forecast system[J]. Journal of Climate, 2006, 19(15): 3483−3517. doi: 10.1175/JCLI3812.1
    [23]
    Gao Zhihan, Shi Xingjian, Wang Hao, et al. Earthformer: exploring space-time transformers for earth system forecasting[C]//Proceedings of the 36th International Conference on Neural Information Processing Systems. New Orleans: Curran Associates Inc. , 2022: 1841.
    [24]
    Ham Y G, Kim J H, Luo Jingjia. Deep learning for multi-year ENSO forecasts[J]. Nature, 2019, 573(7775): 568−572. doi: 10.1038/s41586-019-1559-7
    [25]
    Sun Ming, Chen Lin, Li T, et al. CNN-based ENSO forecasts with a focus on SSTA zonal pattern and physical interpretation[J]. Geophysical Research Letters, 2023, 50(20): e2023GL105175. doi: 10.1029/2023GL105175
    [26]
    Fan Jin, Zhang Ke, Huang Yipan, et al. Parallel spatio-temporal attention-based TCN for multivariate time series prediction[J]. Neural Computing and Applications, 2023, 35(18): 13109−13118. doi: 10.1007/s00521-021-05958-z
    [27]
    Zha Wenshu, Liu Yuping, Wan Yujin, et al. Forecasting monthly gas field production based on the CNN-LSTM model[J]. Energy, 2022, 260: 124889. doi: 10.1016/j.energy.2022.124889
    [28]
    Elmaz F, Eyckerman R, Casteels W, et al. CNN-LSTM architecture for predictive indoor temperature modeling[J]. Building and Environment, 2021, 206: 108327. doi: 10.1016/j.buildenv.2021.108327
    [29]
    Geng Huantong, Hu Zhongyan, Wang Tianlei. ConvLSTM based temperature forecast modification model for North China[J]. Journal of Tropical Meteorology, 2022, 28(4): 405−412. doi: 10.46267/j.1006-8775.2022.030
    [30]
    Moishin M, Deo R C, Prasad R, et al. Designing deep-based learning flood forecast model with ConvLSTM Hybrid Algorithm[J]. IEEE Access, 2021, 9: 50982−50993. doi: 10.1109/ACCESS.2021.3065939
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article views (287) PDF downloads(90) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return