| Citation: | Zheng Mengke,Fang Wei. A cuboid attention-based IOD prediction model[J]. Haiyang Xuebao,2025, 47(12):126–135 doi: 10.12284/hyxb20250127 |
| [1] |
郑梦轲, 方巍, 张霄智. 深度学习在印度洋偶极子预测中的应用研究综述[J]. 海洋学研究, 2024, 42(3): 51−63 doi: 10.3969/j.issn.1001-909X.2024.03.004
Zheng Mengke, Fang Wei, Zhang Xiaozhi. Review of application of deep learning in Indian Ocean Dipole prediction[J]. Journal of Marine Sciences, 2024, 42(3): 51−63. doi: 10.3969/j.issn.1001-909X.2024.03.004
|
| [2] |
滕宇威, 张文君, 刘超, 等. ENSO空间形态变异对ENSO-IOD关系年代际减弱的可能作用[J]. 气象学报, 2020, 78(2): 210−220.
Teng Yuwei, Zhang Wenjun, Liu Chao, et al. Possible role of ENSO spatial pattern variation in interdecadal weakening of ENSO-IOD relationship[J]. Acta Meteorologica Sinica, 2020, 78(2): 210−220.
|
| [3] |
An S I, Park H J, Kim S K, et al. Main drivers of Indian Ocean Dipole asymmetry revealed by a simple IOD model[J]. npj Climate and Atmospheric Science, 2023, 6(1): 93. doi: 10.1038/s41612-023-00422-2
|
| [4] |
Bahiyah A, Wirasatriya A, Mardiansyah W, et al. Massive SST-front anomaly in the tip of Sumatra waters triggered by extreme positive IOD 2019 event[J]. International Journal of Remote Sensing, 2024, 45(23): 8919−8936. doi: 10.1080/01431161.2023.2268821
|
| [5] |
Sun Shuangwen, Fang Yue, Zu Yongcan, et al. Increased occurrences of early Indian Ocean Dipole under global warming[J]. Science Advances, 2022, 8(47): eadd6025. doi: 10.1126/sciadv.add6025
|
| [6] |
Magee A D, Kiem A S. Using indicators of ENSO, IOD, and SAM to improve lead time and accuracy of tropical cyclone outlooks for Australia[J]. Journal of Applied Meteorology and Climatology, 2020, 59(11): 1901−1917. doi: 10.1175/JAMC-D-20-0131.1
|
| [7] |
Roy I, Mliwa M, Troccoli A. Important drivers of East African monsoon variability and improving rainy season onset prediction[J]. Natural Hazards, 2024, 120(1): 429−445. doi: 10.1007/s11069-023-06223-3
|
| [8] |
Cherchi A, Terray P, Ratna S B, et al. Indian Ocean Dipole influence on Indian summer monsoon and ENSO: a review[M]//Chowdary J, Parekh A, Gnanaseelan C. Indian Summer Monsoon Variability. Amsterdam: Elsevier, 2021: 157−182.
|
| [9] |
Cai Wenju, Yang Kai, Wu Lixin, et al. Opposite response of strong and moderate positive Indian Ocean Dipole to global warming[J]. Nature Climate Change, 2021, 11(1): 27−32. doi: 10.1038/s41558-020-00943-1
|
| [10] |
Iskandar I, Lestari D O, Saputra A D, et al. Extreme positive Indian Ocean Dipole in 2019 and its impact on Indonesia[J]. Sustainability, 2022, 14(22): 15155. doi: 10.3390/su142215155
|
| [11] |
Saji N H, Goswami B N, Vinayachandran P N, et al. A dipole mode in the tropical Indian Ocean[J]. Nature, 1999, 401(6751): 360−363.
|
| [12] |
Cai Wenju, Santoso A, Wang Guojian, et al. Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming[J]. Nature, 2014, 510(7504): 254−258. doi: 10.1038/nature13327
|
| [13] |
Sarkar P P, Janardhan P, Roy P. A novel deep neural network model approach to predict Indian Ocean dipole and Equatorial Indian Ocean oscillation indices[J]. Dynamics of Atmospheres and Oceans, 2021, 96: 101266. doi: 10.1016/j.dynatmoce.2021.101266
|
| [14] |
Feng Yuan, Li Chen, Sun Tianying. The study based on the deep learning for Indian Ocean Dipole (IOD) index predication[C]//Proceedings of the ACM Turing Award Celebration Conference – China. Hefei: Association for Computing Machinery, 2021: 23−27.
|
| [15] |
Feng Ming, Boschetti F, Ling Fenghua, et al. Predictability of sea surface temperature anomalies at the eastern pole of the Indian Ocean Dipole—using a convolutional neural network model[J]. Frontiers in Climate, 2022, 4: 925068. doi: 10.3389/fclim.2022.925068
|
| [16] |
Liu Jun, Tang Youmin, Wu Yanling, et al. Forecasting the Indian Ocean Dipole with deep learning techniques[J]. Geophysical Research Letters, 2021, 48(20): e2021GL094407. doi: 10.1029/2021GL094407
|
| [17] |
Ling Fenghua, Luo Jingjia, Li Yue, et al. Multi-task machine learning improves multi-seasonal prediction of the Indian Ocean Dipole[J]. Nature Communications, 2022, 13(1): 7681. doi: 10.1038/s41467-022-35412-0
|
| [18] |
方巍, 张霄智, 齐媚涵. MEPM模型: 基于深度学习的多变量厄尔尼诺−南方涛动预测模型[J]. 地球科学与环境学报, 2024, 46(3): 285−297. doi: 10.19814/j.jese.2023.08029
Fang Wei, Zhang Xiaozhi, Qi Meihan. MEPM: multivariate ENSO prediction model based on deep learning[J]. Journal of Earth Sciences and Environment, 2024, 46(3): 285−297. doi: 10.19814/j.jese.2023.08029
|
| [19] |
张霄智, 方巍, 王淏西. 基于Swin-Transformer和时空融合注意力机制的ENSO预测[J]. 海洋学报, 2024, 46(12): 111−121. doi: 10.12284/hyxb2024127
Zhang Xiaozhi, Fang Wei, Wang Haoxi. ENSO prediction based on Swin-Transformer and spatio-temporal fusion attention mechanism[J]. Haiyang Xuebao, 2024, 46(12): 111−121. doi: 10.12284/hyxb2024127
|
| [20] |
周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 2019, 15(5): 445−456.
Zhou Tianjun, Zou Liwei, Chen Xiaolong. Commentary on the coupled model intercomparison project phase 6 (CMIP6)[J]. Climate Change Research, 2019, 15(5): 445−456.
|
| [21] |
Carton J A, Giese B S. A reanalysis of ocean climate using simple ocean data assimilation (SODA)[J]. Monthly Weather Review, 2008, 136(8): 2999−3017. doi: 10.1175/2007MWR1978.1
|
| [22] |
Saha S, Nadiga S, Thiaw C, et al. The NCEP climate forecast system[J]. Journal of Climate, 2006, 19(15): 3483−3517. doi: 10.1175/JCLI3812.1
|
| [23] |
Gao Zhihan, Shi Xingjian, Wang Hao, et al. Earthformer: exploring space-time transformers for earth system forecasting[C]//Proceedings of the 36th International Conference on Neural Information Processing Systems. New Orleans: Curran Associates Inc. , 2022: 1841.
|
| [24] |
Ham Y G, Kim J H, Luo Jingjia. Deep learning for multi-year ENSO forecasts[J]. Nature, 2019, 573(7775): 568−572. doi: 10.1038/s41586-019-1559-7
|
| [25] |
Sun Ming, Chen Lin, Li T, et al. CNN-based ENSO forecasts with a focus on SSTA zonal pattern and physical interpretation[J]. Geophysical Research Letters, 2023, 50(20): e2023GL105175. doi: 10.1029/2023GL105175
|
| [26] |
Fan Jin, Zhang Ke, Huang Yipan, et al. Parallel spatio-temporal attention-based TCN for multivariate time series prediction[J]. Neural Computing and Applications, 2023, 35(18): 13109−13118. doi: 10.1007/s00521-021-05958-z
|
| [27] |
Zha Wenshu, Liu Yuping, Wan Yujin, et al. Forecasting monthly gas field production based on the CNN-LSTM model[J]. Energy, 2022, 260: 124889. doi: 10.1016/j.energy.2022.124889
|
| [28] |
Elmaz F, Eyckerman R, Casteels W, et al. CNN-LSTM architecture for predictive indoor temperature modeling[J]. Building and Environment, 2021, 206: 108327. doi: 10.1016/j.buildenv.2021.108327
|
| [29] |
Geng Huantong, Hu Zhongyan, Wang Tianlei. ConvLSTM based temperature forecast modification model for North China[J]. Journal of Tropical Meteorology, 2022, 28(4): 405−412. doi: 10.46267/j.1006-8775.2022.030
|
| [30] |
Moishin M, Deo R C, Prasad R, et al. Designing deep-based learning flood forecast model with ConvLSTM Hybrid Algorithm[J]. IEEE Access, 2021, 9: 50982−50993. doi: 10.1109/ACCESS.2021.3065939
|