Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 47 Issue 12
Dec.  2025
Turn off MathJax
Article Contents
He Yingqiang,Jin Quan,Jiang Longyu, et al. Deep learning-based high-resolution reconstruction of MASNUM wave data in the northern South China Sea[J]. Haiyang Xuebao,2025, 47(12):185–197 doi: 10.12284/hyxb20250123
Citation: He Yingqiang,Jin Quan,Jiang Longyu, et al. Deep learning-based high-resolution reconstruction of MASNUM wave data in the northern South China Sea[J]. Haiyang Xuebao,2025, 47(12):185–197 doi: 10.12284/hyxb20250123

Deep learning-based high-resolution reconstruction of MASNUM wave data in the northern South China Sea

doi: 10.12284/hyxb20250123
  • Received Date: 2025-09-03
  • Rev Recd Date: 2025-12-04
  • Publish Date: 2025-12-31
  • Ocean waves generally refer to wave phenomena in the ocean. Under extreme conditions, wave heights can exceed 20 meters. Waves are closely related to atmospheric motion, ocean dynamics, thermodynamic processes, and the marine environment. To address the issues of high computational load and slow speed in wave numerical models under high-resolution topography, this study utilizes MASNUM wave model data and conducts high-resolution reconstruction research for waves in the northern South China Sea based on deep learning algorithms. Through comprehensive performance evaluation of traditional linear interpolation methods and various deep learning algorithms—Convolutional Neural Networks, Generative Adversarial Networks, and diffusion models for image reconstruction—in high-resolution wave data reconstruction, results show that compared to traditional linear interpolation methods, deep learning algorithms perform better in uncovering the physical variation patterns of wave data. Furthermore, the diffusion model for image reconstruction significantly outperforms both convolutional neural networks and generative adversarial networks, achieving a comprehensive average root mean square error of merely 0.0103 meters. This finding substantiates the reliability of the reconstructed high-resolution wave data and provides a novel methodological framework for establishing advanced high-resolution ocean wave data reconstruction models.
  • loading
  • [1]
    The Wamdi Group. The WAM model-a third generation ocean wave prediction model[J]. Journal of Physical Oceanography, 1988, 18(12): 1775−1810. doi: 10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2
    [2]
    Tolman H L. Effects of numerics on the physics in a third-generation wind-wave model[J]. Journal of Physical Oceanography, 1992, 22(10): 1095−1111. doi: 10.1175/1520-0485(1992)022<1095:EONOTP>2.0.CO;2
    [3]
    Booij N, Ris R C, Holthuijsen L H. A third-generation wave model for coastal regions: 1. Model description and validation[J]. Journal of Geophysical Research: Oceans, 1999, 104(C4): 7649−7666. doi: 10.1029/98JC02622
    [4]
    袁业立, 潘增弟, 华锋, 等. LAGFD-WAM海浪数值模式——Ⅰ. 基本物理模型[J]. 海洋学报, 1992, 14(5): 1−7.

    Yuan Yeli, Pan Zengdi, Hua Feng, et al. LAGDF-WAM numerical wave model—I. basic physical model[J]. Haiyang Xuebao, 1992, 14(5): 1−7.
    [5]
    袁业立, 华锋, 潘增弟, 等. LAGFD-WAM海浪数值模式——Ⅱ. 区域性特征线嵌入格式及其应用[J]. 海洋学报, 1992, 14(6): 12−24.

    Yuan Yeli, Hua Feng, Pan Zengdi, et al. LAGFD-WAM numerical wave model—II. Characteristics inlaid scheme and its application[J]. Haiyang Xuebao, 1992, 14(6): 12−24.
    [6]
    杨永增, 乔方利, 赵伟, 等. 球坐标系下MASNUM海浪数值模式的建立及其应用[J]. 海洋学报, 2005, 27(2): 1−7. doi: 10.3321/j.issn:0253-4193.2005.02.001

    Yang Yongzeng, Qiao Fangli, Zhao Wei, et al. MASNUM ocean wave numerical model in spherical coordinates and its application[J]. Haiyang Xuebao, 2005, 27(2): 1−7. doi: 10.3321/j.issn:0253-4193.2005.02.001
    [7]
    Park S C, Park M K, Kang M G. Super-resolution image reconstruction: a technical overview[J]. IEEE Signal Processing Magazine, 2003, 20(3): 21−36. doi: 10.1109/MSP.2003.1203207
    [8]
    Patanavijit V. Super-resolution reconstruction and its future research direction[J]. AU Journal of Technology (AU JT), 2009, 12(3): 149−163.
    [9]
    Merizzi F, Asperti A, Colamonaco S. Wind speed super-resolution and validation: from ERA5 to CERRA via diffusion models[J]. Neural Computing and Applications, 2024, 36(34): 21899−21921. doi: 10.1007/s00521-024-10139-9
    [10]
    Wang Shuo, Li Xiaoyan, Zhu Xueming, et al. Spatial downscaling of sea surface temperature using diffusion model[J]. Remote Sensing, 2024, 16(20): 3843. doi: 10.3390/rs16203843
    [11]
    Wan Xianci, Liu Baojian, Guo Zhizhou, et al. Super resolution mapping of scatterometer ocean surface wind speed using generative adversarial network: experiments in the southern China sea[J]. Journal of Marine Science and Engineering, 2024, 12(2): 228. doi: 10.3390/jmse12020228
    [12]
    Michel M, Obakrim S, Raillard N, et al. Deep learning for statistical downscaling of sea states[J]. Advances in Statistical Climatology, Meteorology and Oceanography, 2022, 8(1): 83−95. doi: 10.5194/ascmo-8-83-2022
    [13]
    Zhu Xiaowen, Wu Kejian, Huang Weinan. Deep learning approach for downscaling of significant wave height data from wave models[J]. Ocean Modelling, 2023, 185: 102257. doi: 10.1016/j.ocemod.2023.102257
    [14]
    Yu Miao, Wang Zhifeng, Song Dalei, et al. Deep learning approach for downscaling the significant wave height based on CBAM_CGAN[J]. Ocean Engineering, 2024, 312: 119169. doi: 10.1016/j.oceaneng.2024.119169
    [15]
    Wu Xiaoyu, Zhao Rui, Chen Hongyi, et al. GSDNet: a deep learning model for downscaling the significant wave height based on NAFNet[J]. Journal of Sea Research, 2024, 198: 102482. doi: 10.1016/j.seares.2024.102482
    [16]
    金权. 基于机器学习算法对海浪波高的预测及优化研究[D]. 青岛: 自然资源部第一海洋研究所, 2019.

    Jin Quan. Prediction and optimization of wave height based on machine learning algorithm[D]. Qingdao: First Institute of Oceanography, Ministry of Natural Resources, 2019.
    [17]
    Dong Chao, Loy C C, He Kaiming, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295−307. doi: 10.1109/TPAMI.2015.2439281
    [18]
    Ledig C, Theis L, Huszár F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 105−114.
    [19]
    Xia Bin, Zhang Yulun, Wang Shiyin, et al. DiffIR: efficient diffusion model for image restoration[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 13049−13059.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article views (13) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return