| Citation: | He Yingqiang,Jin Quan,Jiang Longyu, et al. Deep learning-based high-resolution reconstruction of MASNUM wave data in the northern South China Sea[J]. Haiyang Xuebao,2025, 47(12):185–197 doi: 10.12284/hyxb20250123 |
| [1] |
The Wamdi Group. The WAM model-a third generation ocean wave prediction model[J]. Journal of Physical Oceanography, 1988, 18(12): 1775−1810. doi: 10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2
|
| [2] |
Tolman H L. Effects of numerics on the physics in a third-generation wind-wave model[J]. Journal of Physical Oceanography, 1992, 22(10): 1095−1111. doi: 10.1175/1520-0485(1992)022<1095:EONOTP>2.0.CO;2
|
| [3] |
Booij N, Ris R C, Holthuijsen L H. A third-generation wave model for coastal regions: 1. Model description and validation[J]. Journal of Geophysical Research: Oceans, 1999, 104(C4): 7649−7666. doi: 10.1029/98JC02622
|
| [4] |
袁业立, 潘增弟, 华锋, 等. LAGFD-WAM海浪数值模式——Ⅰ. 基本物理模型[J]. 海洋学报, 1992, 14(5): 1−7.
Yuan Yeli, Pan Zengdi, Hua Feng, et al. LAGDF-WAM numerical wave model—I. basic physical model[J]. Haiyang Xuebao, 1992, 14(5): 1−7.
|
| [5] |
袁业立, 华锋, 潘增弟, 等. LAGFD-WAM海浪数值模式——Ⅱ. 区域性特征线嵌入格式及其应用[J]. 海洋学报, 1992, 14(6): 12−24.
Yuan Yeli, Hua Feng, Pan Zengdi, et al. LAGFD-WAM numerical wave model—II. Characteristics inlaid scheme and its application[J]. Haiyang Xuebao, 1992, 14(6): 12−24.
|
| [6] |
杨永增, 乔方利, 赵伟, 等. 球坐标系下MASNUM海浪数值模式的建立及其应用[J]. 海洋学报, 2005, 27(2): 1−7. doi: 10.3321/j.issn:0253-4193.2005.02.001
Yang Yongzeng, Qiao Fangli, Zhao Wei, et al. MASNUM ocean wave numerical model in spherical coordinates and its application[J]. Haiyang Xuebao, 2005, 27(2): 1−7. doi: 10.3321/j.issn:0253-4193.2005.02.001
|
| [7] |
Park S C, Park M K, Kang M G. Super-resolution image reconstruction: a technical overview[J]. IEEE Signal Processing Magazine, 2003, 20(3): 21−36. doi: 10.1109/MSP.2003.1203207
|
| [8] |
Patanavijit V. Super-resolution reconstruction and its future research direction[J]. AU Journal of Technology (AU JT), 2009, 12(3): 149−163.
|
| [9] |
Merizzi F, Asperti A, Colamonaco S. Wind speed super-resolution and validation: from ERA5 to CERRA via diffusion models[J]. Neural Computing and Applications, 2024, 36(34): 21899−21921. doi: 10.1007/s00521-024-10139-9
|
| [10] |
Wang Shuo, Li Xiaoyan, Zhu Xueming, et al. Spatial downscaling of sea surface temperature using diffusion model[J]. Remote Sensing, 2024, 16(20): 3843. doi: 10.3390/rs16203843
|
| [11] |
Wan Xianci, Liu Baojian, Guo Zhizhou, et al. Super resolution mapping of scatterometer ocean surface wind speed using generative adversarial network: experiments in the southern China sea[J]. Journal of Marine Science and Engineering, 2024, 12(2): 228. doi: 10.3390/jmse12020228
|
| [12] |
Michel M, Obakrim S, Raillard N, et al. Deep learning for statistical downscaling of sea states[J]. Advances in Statistical Climatology, Meteorology and Oceanography, 2022, 8(1): 83−95. doi: 10.5194/ascmo-8-83-2022
|
| [13] |
Zhu Xiaowen, Wu Kejian, Huang Weinan. Deep learning approach for downscaling of significant wave height data from wave models[J]. Ocean Modelling, 2023, 185: 102257. doi: 10.1016/j.ocemod.2023.102257
|
| [14] |
Yu Miao, Wang Zhifeng, Song Dalei, et al. Deep learning approach for downscaling the significant wave height based on CBAM_CGAN[J]. Ocean Engineering, 2024, 312: 119169. doi: 10.1016/j.oceaneng.2024.119169
|
| [15] |
Wu Xiaoyu, Zhao Rui, Chen Hongyi, et al. GSDNet: a deep learning model for downscaling the significant wave height based on NAFNet[J]. Journal of Sea Research, 2024, 198: 102482. doi: 10.1016/j.seares.2024.102482
|
| [16] |
金权. 基于机器学习算法对海浪波高的预测及优化研究[D]. 青岛: 自然资源部第一海洋研究所, 2019.
Jin Quan. Prediction and optimization of wave height based on machine learning algorithm[D]. Qingdao: First Institute of Oceanography, Ministry of Natural Resources, 2019.
|
| [17] |
Dong Chao, Loy C C, He Kaiming, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295−307. doi: 10.1109/TPAMI.2015.2439281
|
| [18] |
Ledig C, Theis L, Huszár F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 105−114.
|
| [19] |
Xia Bin, Zhang Yulun, Wang Shiyin, et al. DiffIR: efficient diffusion model for image restoration[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 13049−13059.
|