| Citation: | Jiang Yunmu,Yu Dinghao,Li Gang, et al. A model of extreme environmental conditions for wind–wave–swell and related structural analysis[J]. Haiyang Xuebao,2025, 47(12):70–83 doi: 10.12284/hyxb20250121 |
| [1] |
茹继平, 刘加平, 曲久辉, 等. 建筑、环境与土木工程[M]. 北京: 中国建筑工业出版社, 2011.
Ru Jiping, Liu Jiaping, Qu Jiuhui, et al. Architecture Environmental and Civil Engineering[M]. Beijing: China Architecture & Building Press, 2011.
|
| [2] |
林伊楠, 陶爱峰, 李雪丁, 等. 台湾海峡风涌浪分离方法研究[J]. 海洋学报, 2019, 41(11): 25−34.
Lin Yinan, Tao Aifeng, Li Xueding, et al. Study on separation method of wind-wave and swell in the Taiwan Strait[J]. Haiyang Xuebao, 2019, 41(11): 25−34.
|
| [3] |
周延东, 雷震名, 孙国民, 等. 涌浪基本理论研究综述[J]. 水道港口, 2016, 37(1): 1−6. doi: 10.3969/j.issn.1005-8443.2016.01.001
Zhou Yandong, Lei Zhenming, Sun Guomin, et al. A review on basic theory research of swell[J]. Journal of Waterway and Harbor, 2016, 37(1): 1−6. doi: 10.3969/j.issn.1005-8443.2016.01.001
|
| [4] |
史宪莹, 张宁川. 混合浪作用下系泊船舶运动响应规律试验研究[J]. 水动力学研究与进展, 2011, 26(5): 574−580. doi: 10.3969/j.issn1000-4874.2011.05.008
Shi Xianying, Zhang Ningchuan. Experimental study of a mooring ship’s motion responses in mixed waves[J]. Chinese Journal of Hydrodynamics, 2011, 26(5): 574−580. doi: 10.3969/j.issn1000-4874.2011.05.008
|
| [5] |
Longuet-Higgins M S, Stewart R W. Changes in the form of short gravity waves on long waves and tidal currents[J]. Journal of Fluid Mechanics, 1960, 8(4): 565−583. doi: 10.1017/S0022112060000803
|
| [6] |
Yang Shanghui, Deng Xiaowei, Zhang Mingming, et al. Effect of wave spectral variability on the dynamic response of offshore wind turbine considering soil-pile-structure interaction[J]. Ocean Engineering, 2023, 267: 113222. doi: 10.1016/j.oceaneng.2022.113222
|
| [7] |
Ti Zilong, Wei Kai, Li Yongle, et al. Effect of wave spectral variability on stochastic response of a long-span bridge subjected to random waves during tropical cyclones[J]. Journal of Bridge Engineering, 2020, 25(1): 04019131 doi: 10.1061/(ASCE)BE.1943-5592.0001517
|
| [8] |
Li Gang, Jiang Yunmu, Yu Dinghao, et al. A mixed stochastic waves model for analyzing offshore structures considering engineering characteristics correlation of wind-generated-wave and swell[J]. Ocean Engineering, 2024, 314: 119671. doi: 10.1016/j.oceaneng.2024.119671
|
| [9] |
Han Xinyu, Jiang Yunpeng, Dong Sheng. Wave forces on crown wall of rubble mound breakwater under swell waves[J]. Ocean Engineering, 2022, 259: 111911. doi: 10.1016/j.oceaneng.2022.111911
|
| [10] |
Van Gent M R A. Influence of oblique wave attack on wave overtopping at caisson breakwaters with sea and swell conditions[J]. Coastal Engineering, 2021, 164: 103834. doi: 10.1016/j.coastaleng.2020.103834
|
| [11] |
Radfar S, Shafieefar M, Akbari H, et al. Design of a rubble mound breakwater under the combined effect of wave heights and water levels, under present and future climate conditions[J]. Applied Ocean Research, 2021, 112: 102711. doi: 10.1016/j.apor.2021.102711
|
| [12] |
Van Der Werf I M, Van Gent M R A. Wave overtopping over coastal structures with oblique wind and swell waves[J]. Journal of Marine Science and Engineering, 2018, 6(4): 149. doi: 10.3390/jmse6040149
|
| [13] |
Giske F I G, Leira B J, Øiseth O. Full long-term extreme response analysis of marine structures using inverse FORM[J]. Probabilistic Engineering Mechanics, 2017, 50: 1−8. doi: 10.1016/j.probengmech.2017.10.007
|
| [14] |
Low Y M, Huang Xiaoxu. Long-term extreme response analysis of offshore structures by combining importance sampling with subset simulation[J]. Structural Safety, 2017, 69: 79−95. doi: 10.1016/j.strusafe.2017.08.001
|
| [15] |
Giske F I G, Kvåle K A, Leira B J, et al. Long-term extreme response analysis of a long-span pontoon bridge[J]. Marine Structures, 2018, 58: 154−171. doi: 10.1016/j.marstruc.2017.11.010
|
| [16] |
Li Xuan, Zhang Wei. Long-term assessment of a floating offshore wind turbine under environmental conditions with multivariate dependence structures[J]. Renewable Energy, 2020, 147: 764−775. doi: 10.1016/j.renene.2019.09.076
|
| [17] |
Haver S, Winterstein S R. Environmental contour lines: a method for estimating long term extremes by a short term analysis[C]//Paper presented at the SNAME Maritime Convention. Houston: SNAME, 2008: D011S002R005.
|
| [18] |
Agarwal P, Manuel L. Simulation of offshore wind turbine response for long-term extreme load prediction[J]. Engineering Structures, 2009, 31(10): 2236−2246. doi: 10.1016/j.engstruct.2009.04.002
|
| [19] |
Winterstein S R, Ude T C, Cornell C A, et al. Environmental parameters for extreme response: inverse FORM with omission factors[C]//Proceedings of the 6th International Conference on Structural Safety and Reliability. Innsbruck: International Association for Structural Safety and Reliability, 1993: 551−557.
|
| [20] |
Karimirad M, Moan T. Extreme dynamic structural response analysis of catenary moored spar wind turbine in harsh environmental conditions[J]. Journal of Offshore Mechanics and Arctic Engineering, 2011, 133(4): 041103. doi: 10.1115/1.4003393
|
| [21] |
Rony J S, Karmakar D. Long-term response analysis of hybrid STLP-WEC offshore floating wind turbine[J]. Ships and Offshore Structures, 2025.
|
| [22] |
Manuel L, Nguyen P T T, Canning J, et al. Alternative approaches to develop environmental contours from metocean data[J]. Journal of Ocean Engineering and Marine Energy, 2018, 4(4): 293−310. doi: 10.1007/s40722-018-0123-0
|
| [23] |
Öhlschläger Y. Exploring the feasibility of placing a wind turbine on top of an FPSO[D]. Delft: Delft University of Technology, 2022.
|
| [24] |
Wang Xiaozhi, Pegg N. Proceedings of the 21st international ship and offshore structures congress VOLUME 3 discussions revision 1[C]//21st International Ship and Offshore Structures Congress Volume 3 Discussions. Vancouver, Canada: SNAME, 2022.
|
| [25] |
Chen Lingte. Integrated energy operation solution customized for floating offshore wind power characteristics[D]. Glasgow: University of Glasgow, 2024.
|
| [26] |
IEC. IEC 61400-3, Wind turbines-Part 3: design requirements for offshore wind turbines[S]. International Electrotechnical Commission, 2009.
|
| [27] |
IEC. IEC 61400-2, Wind turbines-Part 2: design requirements for small wind turbines[S]. International Electrotechnical Commission, 2013.
|
| [28] |
DNV. DNV-RP-C205, Environmental conditions and environmental loads[S]. Det Norske Veritas, 2017.
|
| [29] |
中华人民共和国住房和城乡建设部. 城市绿地规划标准: GB/T 51346−2019[S]. 北京: 中国建筑工业出版社, 2019.
Ministry of Housing and Urban Rural Development of the People’s Republic of China. Standard for planning of urban green space: GB/T 51346-2019[S]. Beijing: China Architecture & Building Press, 2019.
|
| [30] |
Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999−2049. doi: 10.1002/qj.3803
|
| [31] |
Hersbach H, Bell B, Berrisford P, et al. The ERA5 Global Reanalysis: achieving a detailed record of the climate and weather for the past 70 years[C]//Proceedings of the 22nd EGU General Assembly. EGU, 2020: 10375.
|
| [32] |
Wang Jichao, Wang Yue. Evaluation of the ERA5 significant wave height against NDBC buoy data from 1979 to 2019[J]. Marine Geodesy, 2022, 45(2): 151−165. doi: 10.1080/01490419.2021.2011502
|
| [33] |
Çalışır E, Soran M B, Akpınar A. Quality of the ERA5 and CFSR winds and their contribution to wave modelling performance in a semi-closed sea[J]. Journal of Operational Oceanography, 2023, 16(2): 106−130. doi: 10.1080/1755876X.2021.1911126
|
| [34] |
Wright E E, Bourassa M A, Stoffelen A, et al. Characterizing buoy wind speed error in high winds and varying sea state with ASCAT and ERA5[J]. Remote Sensing, 2021, 13(22): 4558. doi: 10.3390/rs13224558
|
| [35] |
Chen Y C. A tutorial on kernel density estimation and recent advances[J]. Biostatistics & Epidemiology, 2017, 1(1): 161−187.
|
| [36] |
Joe H. Families of m-variate distributions with given margins and m(m-1)/2 bivariate dependence parameters[J]. Lecture Notes-Monograph Series, 1996, 28: 120−141.
|
| [37] |
Dißmann J, Brechmann E C, Czado C, et al. Selecting and estimating regular vine copulae and application to financial returns[J]. Computational Statistics & Data Analysis, 2013, 59: 52−69.
|
| [38] |
Kendall M G. A new measure of rank correlation[J]. Biometrika, 1938, 30(1/2): 81−93. doi: 10.2307/2332226
|
| [39] |
Pearson K. Notes on the history of correlation[J]. Biometrika, 1920, 13(1): 25−45. doi: 10.1093/biomet/13.1.25
|
| [40] |
Diks C, Panchenko V. A new statistic and practical guidelines for nonparametric Granger causality testing[J]. Journal of Economic Dynamics and Control, 2006, 30(9/10): 1647−1669.
|
| [41] |
Barnett L, Seth A K. The MVGC multivariate Granger causality toolbox: a new approach to Granger-causal inference[J]. Journal of Neuroscience Methods, 2014, 223: 50−68. doi: 10.1016/j.jneumeth.2013.10.018
|