Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 47 Issue 12
Dec.  2025
Turn off MathJax
Article Contents
Zhou Daocheng,Jiang Liang,Wang Bin, et al. A study on an improved stochastic design wave approach based on the probability model optimized for maximum structural responses[J]. Haiyang Xuebao,2025, 47(12):60–69 doi: 10.12284/hyxb20250119
Citation: Zhou Daocheng,Jiang Liang,Wang Bin, et al. A study on an improved stochastic design wave approach based on the probability model optimized for maximum structural responses[J]. Haiyang Xuebao,2025, 47(12):60–69 doi: 10.12284/hyxb20250119

A study on an improved stochastic design wave approach based on the probability model optimized for maximum structural responses

doi: 10.12284/hyxb20250119
  • Received Date: 2025-09-15
  • Rev Recd Date: 2025-11-24
  • Available Online: 2025-12-09
  • Publish Date: 2025-12-31
  • The stability and safety of floating offshore wind turbine (FOWT) platforms in deep-sea and far-sea environments are crucial for the entire system. Currently, the stochastic design wave method is the conventional approach for structural design; however, its assumption that the maximum structural response follows a Rayleigh distribution may not accurately reflect reality. To address this, this paper proposes an improved stochastic design wave method that reasonably considers the stochastic characteristics of extreme structural responses. Specifically, this method establishes a probability model for the local short-term maximum distribution using samples of the maximum structural response derived from the mean zero-crossing period. Subsequently, a global probability model for the maximum value over the total duration is derived to determine the design wave parameters. A 5 MW Braceless FOWT is selected as the case study for a comparative analysis of wave loads and stresses using both the conventional and improved methods. The results indicate that the improved method more accurately characterizes the stochastic characteristics of extreme responses, and thus the calculated structural stress aligns better with actual conditions. Notably, the conventional stochastic design wave method is found to underestimate the structural stress with a maximum error of 4.63%, which implies that structures designed with this approach may pose potential safety hazards. The findings of this study have significant implications for the structural design and safety assessment of similar FOWT platforms.
  • loading
  • [1]
    张海彬, 沈志平, 李小平. 深水半潜式钻井平台波浪载荷预报与结构强度评估[J]. 船舶, 2007(2): 33−38. doi: 10.3969/j.issn.1001-9855.2007.02.008

    Zhang Haibin, Shen Zhiping, Li Xiaoping. Wave load calculation and structural strength assessment for deepwater semi-submersible[J]. Ship & Boat, 2007(2): 33−38. doi: 10.3969/j.issn.1001-9855.2007.02.008
    [2]
    王世圣, 谢彬, 冯玮, 等. 两种典型深水半潜式钻井平台运动特性和波浪载荷的计算分析[J]. 中国海上油气, 2008, 20(5): 349−352. doi: 10.3969/j.issn.1673-1506.2008.05.017

    Wang Shisheng, Xie Bin, Feng Wei, et al. Calculation and analysis of motion characteristics and wave load for two types of deepwater semi-submersible drilling rig with different configuration[J]. China Offshore Oil and Gas, 2008, 20(5): 349−352. doi: 10.3969/j.issn.1673-1506.2008.05.017
    [3]
    严文军, 刘俊. 半潜平台总体强度计算中的波浪工况研究[J]. 船舶工程, 2014, 36(4): 108−111. doi: 10.13788/j.cnki.cbgc.2014.0195

    Yan Wenjun, Liu Jun. Study on wave working condition in overall strength calculation of semi-submersible platform[J]. Ship Engineering, 2014, 36(4): 108−111. doi: 10.13788/j.cnki.cbgc.2014.0195
    [4]
    贾德君, 李范春, 钱杨, 等. 南海海域半潜式平台表面载荷分布分析计算[J]. 大连海事大学学报, 2015, 41(3): 19−23. doi: 10.16411/j.cnki.issn1006-7736.2015.03.004

    Jia Dejun, Li Fanchun, Qian Yang, et al. Analysis and calculation of surface loads distribution for a semi-submersible platform in the South China Sea[J]. Journal of Dalian Maritime University, 2015, 41(3): 19−23. doi: 10.16411/j.cnki.issn1006-7736.2015.03.004
    [5]
    邓露, 王彪, 肖志颖, 等. 钢筋混凝土浮式风机平台概念设计与性能研究[J]. 华中科技大学学报(自然科学版), 2016, 44(1): 11−15, 21. doi: 10.13245/j.hust.160103

    Deng Lu, Wang Biao, Xiao Zhiying, et al. Conceptual design and performance analysis of a reinforced concrete platform for floating wind turbines[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2016, 44(1): 11−15, 21. doi: 10.13245/j.hust.160103
    [6]
    桑松, 于梅, 石晓, 等. 基于设计波法的半潜型浮式风力机结构强度校核[J]. 太阳能学报, 2019, 40(1): 185−191. doi: 10.19912/j.0254-0096.2019.01.027

    Sang Song, Yu Mei, Shi Xiao, et al. Strength check on deep sea semi-submersible floating wind turbine based on design wave method[J]. Acta Energiae Solaris Sinica, 2019, 40(1): 185−191. doi: 10.19912/j.0254-0096.2019.01.027
    [7]
    李境伟, 窦培林, 张兴刚. 超深水半潜式平台典型节点强度分析[J]. 舰船科学技术, 2021, 43(19): 72−78. doi: 10.3404/j.issn.1672-7649.2021.10.016

    Li Jingwei, Dou Peilin, Zhang Xinggang. Typical node strength analysis of ultra-deepwater semi-submersible platform[J]. Ship Science and Technology, 2021, 43(19): 72−78. doi: 10.3404/j.issn.1672-7649.2021.10.016
    [8]
    李辉, 任慧龙, 陈北燕, 等. 深水半潜式平台波浪载荷计算方法研究[J]. 华中科技大学学报(自然科学版), 2009, 37(3): 122−125. doi: 10.3321/j.issn:1671-4512.2009.03.035

    Li Hui, Ren Huilong, Chen Beiyan, et al. Calculating the wave loads of semi-submersible platforms in deep water[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2009, 37(3): 122−125. doi: 10.3321/j.issn:1671-4512.2009.03.035
    [9]
    张朝阳, 刘俊, 白艳彬. 深水半潜平台波浪载荷计算的设计波方法研究[J]. 中国海洋平台, 2012, 27(5): 34−40.

    Zhang Chaoyang, Liu Jun, Bai Yanbin. Study on design wave methods of calculating the wave loads of a deep-water semi-submersible platform[J]. China Offshore Platform, 2012, 27(5): 34−40.
    [10]
    韩荣贵, 时磊, 王金光, 等. 半潜式平台总体波浪载荷的几种算法对比[J]. 船舶标准化工程师, 2013, 46(1): 38−40. doi: 10.3969/j.issn.1005-7560.2013.01.022

    Han Ronggui, Shi Lei, Wang Jinguang, et al. Comparison on methods of computation global wave load for semi-submersible unit[J]. Ship Standardization Engineer, 2013, 46(1): 38−40. doi: 10.3969/j.issn.1005-7560.2013.01.022
    [11]
    李红涛, 邓贤锋. 半潜式平台整体结构设计的波浪载荷研究[J]. 中国海上油气, 2015, 27(2): 98−103. doi: 10.11935/j.issn.1673-1506.2015.02.017

    Li Hongtao, Deng Xianfeng. Study on wave loads for global structural design of semi-submersibles[J]. China Offshore Oil and Gas, 2015, 27(2): 98−103. doi: 10.11935/j.issn.1673-1506.2015.02.017
    [12]
    李平, 王红博, 陈超核. 基于长、短期设计波的浮式风机平台结构强度研究[J]. 华南理工大学学报(自然科学版), 2025, 53(2): 92−106.

    Li Ping, Wang Hongbo, Chen Chaohe. Research on the structural strength of floating offshore wind turbine platform based on long and short term design waves[J]. Journal of South China University of Technology (Natural Science Edition), 2025, 53(2): 92−106.
    [13]
    DNV GL. Column-stabilised units: DNVGL-RP-C103[S]. Oslo: DNV GL, 2015.
    [14]
    Brown S A, Tosdevin T, Jin Siya, et al. On the selection of design waves for predicting extreme motions of a floating offshore wind turbine[J]. Ocean Engineering, 2023, 290: 116400. doi: 10.1016/j.oceaneng.2023.116400
    [15]
    Vittori F E. Design and analysis of a semi-submersible floating wind turbine with focus on structural response reduction[D]. Trondheim: Norwegian University of Science and Technology, 2015.
    [16]
    Luan Chenyu, Gao Zhen, Moan T. Design and analysis of a braceless steel 5-MW semi-submersible wind turbine[C]//Proceedings of the ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. Busan, South Korea: ASME, 2016.
    [17]
    Li Lin, Gao Zhen, Moan T. Joint distribution of environmental condition at five European offshore sites for design of combined wind and wave energy devices[J]. Journal of Offshore Mechanics and Arctic Engineering, 2015, 137(3): 031901. doi: 10.1115/1.4029842
    [18]
    张敏, 赵薇, 李炜, 等. 10 MW级海上风电新型浮式基础结构强度分析[J]. 太阳能学报, 2024, 45(6): 628−636. doi: 10.19912/j.0254-0096.tynxb.2023-0199

    Zhang Min, Zhao Wei, Li Wei, et al. Strength analysis of new floating infrastructure for 10 MW offshore wind turbine[J]. Acta Energiae Solaris Sinica, 2024, 45(6): 628−636. doi: 10.19912/j.0254-0096.tynxb.2023-0199
    [19]
    ABS. Rules for Building and Classing: Mobile Offshore Units[S]. Houston: American Bureau of Shipping, 2022.
    [20]
    DNV GL. Environmental Conditions and Environmental Loads: DNVGL-RP-C205[S]. Oslo: DNV GL, 2019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(8)

    Article views (88) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return