Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 47 Issue 12
Dec.  2025
Turn off MathJax
Article Contents
Chi Hao,Zhang Youguang. A method for calculating ocean surface gusts using GPM satellite data[J]. Haiyang Xuebao,2025, 47(12):198–210 doi: 10.12284/hyxb20250117
Citation: Chi Hao,Zhang Youguang. A method for calculating ocean surface gusts using GPM satellite data[J]. Haiyang Xuebao,2025, 47(12):198–210 doi: 10.12284/hyxb20250117

A method for calculating ocean surface gusts using GPM satellite data

doi: 10.12284/hyxb20250117
  • Received Date: 2025-09-09
  • Rev Recd Date: 2025-11-21
  • Available Online: 2025-12-01
  • Publish Date: 2025-12-31
  • Ocean surface gusts are of great significance for marine resource utilization, ocean research, and the safety of maritime transportation and engineering. However, observational methods are limited, and surface gust data remain scarce. In this study, we employ the Dual-frequency Precipitation Radar (DPR) and the GPM Microwave Imager (GMI) onboard the Global Precipitation Measurement (GPM) satellite. Brightness temperatures from GMI are used to correct Ku-band backscattering coefficients, which are then combined with ERA5 surface wind speeds to retrieve sea surface gusts, thereby enhancing gust retrieval capability. The results show that the retrieved gusts achieve a correlation coefficient (R) of 0.93 and a root mean square error (RMSE) of 1.81 m/s compared with ERA5 gusts, and R = 0.78 with RMSE = 1.88 m/s against NDBC buoy data. Retrievals from the HY-2B satellite using the same method yield R = 0.90 and RMSE = 1.84 m/s against buoy observations. Replacing ERA5 wind speeds with buoy measurements as reference further improves the retrieval accuracy of both GPM and HY-2B, highlighting the importance of accurate surface wind input. Moreover, due to its active–passive observation frequencies being more consistent with buoy observations, the GPM satellite achieves higher gust retrieval accuracy than HY-2B.
  • loading
  • [1]
    大气科学名词审定委员会. 大气科学名词[M]. 3版. 北京: 科学出版社, 2009.

    Approval Committee of Atmospheric Science Terms. Chinese Terms in Atmospheric Science[M]. 3rd ed. Beijing: Science Press, 2009.
    [2]
    Sheridan P. Current gust forecasting techniques, developments and challenges[J]. Advances in Science and Research, 2018, 15: 159−172. doi: 10.5194/asr-15-159-2018
    [3]
    Wang Ke, Lyu Xinyu, Huang Jing, et al. Influence of topography and the underlying surface of the Bohai Sea on wind and gust forecasts[J]. Earth and Space Science, 2023, 10(1): e2022EA002705. doi: 10.1029/2022EA002705
    [4]
    Brasseur O. Development and application of a physical approach to estimating wind gusts[J]. Monthly Weather Review, 2001, 129(1): 5−25. doi: 10.1175/1520-0493(2001)129<0005:DAAOAP>2.0.CO;2
    [5]
    Blaes J L, Glenn D, Hawkins D, et al. Developing a dataset of wind gust factors to improve forecasts of wind gusts in tropical cyclones[C]//39th National Weather Association Annual Meeting. Salt Lake City: National Weather Association, 2014: 43.
    [6]
    周福, 蒋璐璐, 涂小萍, 等. 浙江省几种灾害性大风近地面阵风系数特征[J]. 应用气象学报, 2017, 28(1): 119−128. doi: 10.11898/1001-7313.20170111

    Zhou Fu, Jiang Lulu, Tu Xiaoping, et al. Near-surface gust factor characteristics in several disastrous winds over Zhejiang Province[J]. Journal of Applied Meteorological Science, 2017, 28(1): 119−128. doi: 10.11898/1001-7313.20170111
    [7]
    胡波. 浙江沿海台风阵风系数的影响因子分析[J]. 热带气象学报, 2017, 33(6): 841−849, doi: 10.16032/j.issn.1004-4965.2017.06.005

    Hu Bo. Analysis of gust factor associated with typhoons on Zhejiang coast[J]. Journal of Tropical Meteorology, 2017, 33(6): 841−849, doi: 10.16032/j.issn.1004-4965.2017.06.005
    [8]
    Jung C, Schindler D. Modelling monthly near-surface maximum daily gust speed distributions in Southwest Germany[J]. International Journal of Climatology, 2016, 36(12): 4058−4070. doi: 10.1002/joc.4617
    [9]
    陈戈. 卫星高度计反演海面风速——模式函数与应用实例[J]. 遥感学报, 1999, 3(4): 305−311.

    Chen Ge. On retrieving sea surface wind speed from satellite altimeters: model functions and an application case[J]. Journal of Remote Sensing, 1999, 3(4): 305−311.
    [10]
    Gourrion J, Vandemark D, Bailey S, et al. Satellite altimeter models for surface wind speed developed using ocean satellite crossovers[R]. French Research Institute for Exploitation of the Sea, 2000.
    [11]
    张有广, 蒋城飞, 贾永君, 等. HY-2B卫星载荷联合观测海面阵风的一种反演方法[J]. 海洋学报, 2022, 44(11): 133−143.

    Zhang Youguang, Jiang Chengfei, Jia Yongjun, et al. An inversion method for joint observation of wind gusts by HY-2B satellite remote sensors[J]. Haiyang Xuebao, 2022, 44(11): 133−143.
    [12]
    林静, 张有广. 基于双频段雷达高度计数据的海面阵风反演研究[J]. 海洋学报, 2024, 46(4): 133−142. doi: 10.12284/hyxb2024039

    Lin Jing, Zhang Youguang. Research of sea surface gust inversion by dual band radar altimeter data[J]. Haiyang Xuebao, 2024, 46(4): 133−142. doi: 10.12284/hyxb2024039
    [13]
    张有广, 贾永君, 林明森, 等. 基于HY-2卫星数据的热带气旋风速和气压反演[J]. 遥感学报, 2024, 28(6): 1588−1601.

    Zhang Youguang, Jia Yongjun, Lin Mingsen, et al. A retrieval method of tropical cyclone wind speed and sea level pressure based on HY-2 satellite data[J]. National Remote Sensing Bulletin, 2024, 28(6): 1588−1601.
    [14]
    Skofronick-Jackson G, Petersen W A, Berg W, et al. The Global Precipitation Measurement (GPM) mission for science and society[J]. Bulletin of the American Meteorological Society, 2017, 98(8): 1679−1695. doi: 10.1175/BAMS-D-15-00306.1
    [15]
    余占猷. 利用DPR和GMI探测结果对东亚降水云的个例分析研究[D]. 合肥: 中国科学技术大学, 2016.

    Yu Zhanyou. Case study of precipitation clouds over the East Asia based on DPR and GMI measurements[D]. Hefei: University of Science and Technology of China, 2016.
    [16]
    尹红刚, 吴琼, 谷松岩, 等. 风云三号(0)批降水测量卫星探测能力及应用[J]. 气象科技进展, 2016, 6(3): 55−61. doi: 10.3969/j.issn.2095-1973.2016.03.007

    Yin Honggang, Wu Qiong, Gu Songyan, et al. Analysis of rainfall measurement power in the FY-3(03) rain measurement satellite[J]. Advances in Meteorological Science and Technology, 2016, 6(3): 55−61. doi: 10.3969/j.issn.2095-1973.2016.03.007
    [17]
    Panfilova M, Karaev V. Wind speed retrieval algorithm using Ku-band radar onboard GPM satellite[J]. Remote Sensing, 2021, 13(22): 4565. doi: 10.3390/rs13224565
    [18]
    王振占, 张德海, 赵谨, 等. HY-2A卫星大气校正微波辐射计在轨数据定标和检验研究[J]. 中国工程科学, 2013, 15(7): 44−52,61. doi: 10.3969/j.issn.1009-1742.2013.07.007

    Wang Zhenzhan, Zhang Dehai, Zhao Jin, et al. In-orbit calibration and validation of atmospheric correction microwave radiometer on HY-2A satellite[J]. Strategic Study of CAE, 2013, 15(7): 44−52,61. doi: 10.3969/j.issn.1009-1742.2013.07.007
    [19]
    Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999−2049. doi: 10.1002/qj.3803
    [20]
    张淑静, 吕聪俐, 马敏. 国内外海上多功能浮标发展探讨[J]. 中国海事, 2019(9): 47−51, doi: 10.16831/j.cnki.issn1673-2278.2019.09.017

    Zhang Shujing, Lü Congli, Ma Min. Discussion on the development of domestic and overseas marine multifunction buoy[J]. China Maritime Safety, 2019(9): 47−51, doi: 10.16831/j.cnki.issn1673-2278.2019.09.017
    [21]
    Hsu S A, Meindl E A, Gilhousen D B. Determining the power-law wind-profile exponent under near-neutral stability conditions at sea[J]. Journal of Applied Meteorology and Climatology, 1994, 33(6): 757−765. doi: 10.1175/1520-0450(1994)033<0757:DTPLWP>2.0.CO;2
    [22]
    Campos R M, Gramcianinov C B, De Camargo R, et al. Assessment and calibration of ERA5 severe winds in the Atlantic Ocean using satellite data[J]. Remote Sensing, 2022, 14(19): 4918, doi: 10.3390/rs14194918
    [23]
    Zabolotskikh E V, Mitnik L M, Chapron B. New approach for severe marine weather study using satellite passive microwave sensing[J]. Geophysical Research Letters, 2013, 40(13): 3347−3350. doi: 10.1002/grl.50664
    [24]
    Hwang C, Kao E C, Parsons B. Global derivation of marine gravity anomalies from Seasat, Geosat, ERS-1 and TOPEX/POSEIDON altimeter data[J]. Geophysical Journal International, 1998, 134(2): 449−459. doi: 10.1111/j.1365-246X.1998.tb07139.x
    [25]
    Gower J F R. Intercalibration of wave and wind data from TOPEX/POSEIDON and moored buoys off the west coast of Canada[J]. Journal of Geophysical Research: Oceans, 1996, 101(C2): 3817−3829. doi: 10.1029/95JC03281
    [26]
    黎鹏. 星载波谱仪海面风场反演研究[D]. 武汉: 华中科技大学, 2019.

    Li Peng. The study on spaceborne spectrometer for sea surface wind field retrieval[D]. Wuhan: Huazhong University of Science & Technology, 2019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(3)

    Article views (87) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return