| Citation: | Chen Qinze,Qu Jiaming,Bai He, et al. Sea ice segmentation on optical images empowered by multi-dimensional attention within a U-Net architecture[J]. Haiyang Xuebao,2025, 47(12):103–113 doi: 10.12284/hyxb20250115 |
| [1] |
National Snow and Ice Data Center. Arctic Sea ice decline stalls out at second lowest minimum[EB/OL]. Arctic Sea Ice News & Analysis(2020−09−21)[2025−06−07].https://nsidc.org/sea-ice-today/analyses/arctic-sea-ice-decline-stalls-out-second-lowest-minimum.
|
| [2] |
Barnhart K R, Miller C R, Overeem I, et al. Mapping the future expansion of Arctic open water[J]. Nature Climate Change, 2016, 6(3): 280−285. doi: 10.1038/nclimate2848
|
| [3] |
Wu A, Che Tao, Xu Qingchao, et al. Assessing the economic viability of the Arctic Northeast Passage from 2021 to 2065[J]. International Journal of Digital Earth, 2024, 17(1): 2323182. doi: 10.1080/17538947.2024.2323182
|
| [4] |
Iqrah J M, Koo Y, Wang Wei, et al. Toward polar sea-ice classification using color-based segmentation and auto-labeling of sentinel-2 imagery to train an efficient deep learning model[EB/OL]. (2023−03−08)[2025−06−08]. https://arxiv.org/abs/2303.12719.
|
| [5] |
Meraner A, Ebel P, Zhu Xiaoxiang, et al. Cloud removal in Sentinel-2 imagery using a deep residual neural network and SAR-optical data fusion[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166: 333−346. doi: 10.1016/j.isprsjprs.2020.05.013
|
| [6] |
Haverkamp D, Soh L K, Tsatsoulis C. A dynamic local thresholding technique for sea ice classification[C]//Proceedings of IGARSS’93-IEEE International Geoscience and Remote Sensing Symposium. Tokyo: IEEE, 1993: 638−640.
|
| [7] |
Stofa M M, Abdani S R, Moubark A M, et al. Recent developments of artificial intelligence methods for sea ice concentration monitoring using high-resolution imaging datasets[J]. Ecological Informatics, 2025, 87: 103132. doi: 10.1016/j.ecoinf.2025.103132
|
| [8] |
孙绍哲, 邝慧妍, 叶玉芳, 等. 基于MODIS影像的北极冰水分类方法对比研究[J]. 极地研究, 2025, 37(1): 39−54.
Sun Shaozhe, Kuang Huiyan, Ye Yufang, et al. Comparative study of five methods for Arctic sea ice and water classification based on MODIS images[J]. Chinese Journal of Polar Research, 2025, 37(1): 39−54.
|
| [9] |
Tan Weikai, Li J, Xu Linlin, et al. Semiautomated segmentation of Sentinel-1 SAR imagery for mapping sea ice in Labrador coast[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(5): 1419−1432. doi: 10.1109/JSTARS.2018.2806640
|
| [10] |
王志勇, 孙培蕾, 刘健. 一种联合多特征的极化SAR海冰类型提取方法[J]. 遥感信息, 2020, 35(4): 23−29.
Wang Zhiyong, Sun Peilei, Liu Jian. A sea ice classification method of polarimetric SAR data by multi-feature combination[J]. Remote Sensing Information, 2020, 35(4): 23−29.
|
| [11] |
Ji Wei, Fang Zhou, Feng Decai, et al. Semantic segmentation of arctic sea ice in summer from remote sensing satellite images based on BAU-NET[J]. Journal of Applied Remote Sensing, 2022, 16(4): 046514.
|
| [12] |
Ren Yibin, Xu Huan, Liu Bin, et al. Sea ice and open water classification of SAR images using a deep learning model[C]//IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium. Waikoloa: IEEE, 2020: 3051−3054.
|
| [13] |
郑付强, 匡定波, 胡勇, 等. 基于U-ASPP-Net的北极独立海冰精细识别方法[J]. 红外与毫米波学报, 2021, 40(6): 798−808.
Zheng Fuqiang, Kuang Dingbo, Hu Yong, et al. Refined segmentation method based on U-ASPP-Net for Arctic independent sea ice[J]. Journal of Infrared and Millimeter Waves, 2021, 40(6): 798−808.
|
| [14] |
杨浩. 基于Res-Unet模型的辽东湾遥感影像海冰灾害风险分析[D]. 大连: 大连理工大学, 2024.
Yang Hao. Analysis of sea ice disaster risk in the Liaodong Bay remote sensing images based on Res-UNet model[D]. Dalian: Dalian University of Technology, 2024.
|
| [15] |
Liu Ze, Lin Yutong, Cao Yue, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 9992−10002.
|
| [16] |
邵志远, 赵杰臣, 解龙翔, 等. 基于深度学习和Sentinel-1卫星影像的北极海冰分类精度和影响因素[J]. 海洋学研究, 2024, 42(3): 119−130.
Shao Zhiyuan, Zhao Jiechen, Xie Longxiang, et al. Classification accuracy and influencing factors of Arctic sea ice based on deep learning and Sentinel-1 satellite imagery[J]. Journal of Marine Sciences, 2024, 42(3): 119−130.
|
| [17] |
Borisova J, Kuznetsov A, Solovev G, et al. Understanding the limitations of deep transformer models for sea ice forecasting[C]//25th International Conference on Computational Science. Singapore: Springer, 2025: 104−118.
|
| [18] |
Ren Yibin, Li Xiaofeng, Yang Xiaofeng, et al. Development of a dual-attention U-Net model for sea ice and open water classification on SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4010205.
|
| [19] |
Petty A A, Bagnardi M, Kurtz N T, et al. Assessment of ICESat-2 sea ice surface classification with Sentinel-2 imagery: implications for freeboard and new estimates of lead and floe geometry[J]. Earth and Space Science, 2021, 8(3): e2020EA001491. doi: 10.1029/2020EA001491
|
| [20] |
郑付强, 匡定波, 胡勇, 等. 基于Multiloss-SAM-ConvLSTM的北极航道独立海冰运动预测[J]. 红外与毫米波学报, 2022, 41(5): 894−904.
Zheng Fuqiang, Kuang Dingbo, Hu Yong, et al. Prediction of independent sea ice motion in Arctic channel based on Multiloss-SAM-ConvLSTM[J]. Journal of Infrared and Millimeter Waves, 2022, 41(5): 894−904.
|
| [21] |
National Snow and Ice Data Center. U. S. national ice center arctic and Antarctic sea ice charts in SIGRID-3 format, Version 1[EB/OL]. (2023−02)[2024−12−06]. https://nsidc.org/data/g10013/versions/1. DOI: 10.7265/4B7S-RN93.
|
| [22] |
World Meteorological Organization (WMO). WMO Sea-Ice Nomenclature[EB/OL]. WMO-No. 259(2014−03)[2024−12−06]. https://library.wmo.int/zh/records/item/41953-wmo-sea-ice-nomenclature?offset=50.
|
| [23] |
Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[C]//18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer, 2015: 234−241.
|
| [24] |
Çiçek Ö, Abdulkadir A, Lienkamp S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation[C]//19th International Conference on Medical Image Computing and Computer-Assisted Intervention. Athens: Springer, 2016: 424−432.
|
| [25] |
孙晓宇, 孙启振, 沈辉, 等. 1979−2022年北极海冰范围变化特征及趋势分析[J]. 海洋预报, 2023, 40(5): 49−55.
Sun Xiaoyu, Sun Qizhen, Shen Hui, et al. Analysis of characteristics and trends of Arctic sea ice extent changes from 1979 to 2022[J]. Marine Forecasts, 2023, 40(5): 49−55.
|
| [26] |
苏海洋. 基于深度学习的北极海冰密集度降尺度分析预报方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2024.
Su Haiyang. Arctic sea ice concentration downscaling analysis and prediction based on deep learning[D]. Harbin: Harbin Engineering University, 2024.
|
| [27] |
魏立新, 张占海. 北极海冰变化特征分析[J]. 海洋预报, 2007, 24(4): 42−48.
Wei Lixin, Zhang Zhanhai. Analysis of Arctic sea ice variability[J]. Marine Forecasts, 2007, 24(4): 42−48.
|
| [28] |
Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16×16 words: transformers for image recognition at scale[C]//International Conference on Learning Representations. Vienna: OpenReview. net, 2021.
|