Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 47 Issue 12
Dec.  2025
Turn off MathJax
Article Contents
Chen Qinze,Qu Jiaming,Bai He, et al. Sea ice segmentation on optical images empowered by multi-dimensional attention within a U-Net architecture[J]. Haiyang Xuebao,2025, 47(12):103–113 doi: 10.12284/hyxb20250115
Citation: Chen Qinze,Qu Jiaming,Bai He, et al. Sea ice segmentation on optical images empowered by multi-dimensional attention within a U-Net architecture[J]. Haiyang Xuebao,2025, 47(12):103–113 doi: 10.12284/hyxb20250115

Sea ice segmentation on optical images empowered by multi-dimensional attention within a U-Net architecture

doi: 10.12284/hyxb20250115
  • Received Date: 2025-06-08
  • Rev Recd Date: 2025-11-17
  • Available Online: 2025-11-06
  • Publish Date: 2025-12-31
  • Based on Sentinel-2 optical remote sensing imagery, this paper proposes a sea ice segmentation algorithm empowered by multi-dimensional attention within a U-Net architecture. Building upon the classical U-Net, the algorithm innovatively introduces a temporal-aware multi-head attention module at the end of the encoder path. This module enhances spatial perception using learnable spatial positional encodings and utilizes temporal encodings (where the year is processed by min-max normalization, and the month and day are encoded via sine-cosine functions) as query vectors to perform global temporal correlation reasoning on deep image features. Furthermore, a lightweight triple attention module (channel-spatial-temporal) is embedded within the decoder path. This module calculates the weights for these three dimensions and fuses feature information via element-wise multiplication, effectively enhancing key features and focusing on details. To validate the accuracy and effectiveness of the proposed algorithm, classical VIT, DeepLabV3+ and U-Net models were selected as comparative methods, and ablation studies were conducted. Experimental results demonstrate that the proposed algorithm achieves the best performance in terms of OA (Overall Accuracy), Kappa coefficient, and Mean IoU (Intersection over Union) coefficients, reaching 92.11%, 0.846, and 0.574, respectively. The combined effect of the two attention modules enables the model to avoid global bias while improving local classification confidence. Notably, the classification accuracy for 30%−50% ice concentration and fast ice was significantly improved by 48.8% and 31.95%, respectively.
  • loading
  • [1]
    National Snow and Ice Data Center. Arctic Sea ice decline stalls out at second lowest minimum[EB/OL]. Arctic Sea Ice News & Analysis(2020−09−21)[2025−06−07].https://nsidc.org/sea-ice-today/analyses/arctic-sea-ice-decline-stalls-out-second-lowest-minimum.
    [2]
    Barnhart K R, Miller C R, Overeem I, et al. Mapping the future expansion of Arctic open water[J]. Nature Climate Change, 2016, 6(3): 280−285. doi: 10.1038/nclimate2848
    [3]
    Wu A, Che Tao, Xu Qingchao, et al. Assessing the economic viability of the Arctic Northeast Passage from 2021 to 2065[J]. International Journal of Digital Earth, 2024, 17(1): 2323182. doi: 10.1080/17538947.2024.2323182
    [4]
    Iqrah J M, Koo Y, Wang Wei, et al. Toward polar sea-ice classification using color-based segmentation and auto-labeling of sentinel-2 imagery to train an efficient deep learning model[EB/OL]. (2023−03−08)[2025−06−08]. https://arxiv.org/abs/2303.12719.
    [5]
    Meraner A, Ebel P, Zhu Xiaoxiang, et al. Cloud removal in Sentinel-2 imagery using a deep residual neural network and SAR-optical data fusion[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166: 333−346. doi: 10.1016/j.isprsjprs.2020.05.013
    [6]
    Haverkamp D, Soh L K, Tsatsoulis C. A dynamic local thresholding technique for sea ice classification[C]//Proceedings of IGARSS’93-IEEE International Geoscience and Remote Sensing Symposium. Tokyo: IEEE, 1993: 638−640.
    [7]
    Stofa M M, Abdani S R, Moubark A M, et al. Recent developments of artificial intelligence methods for sea ice concentration monitoring using high-resolution imaging datasets[J]. Ecological Informatics, 2025, 87: 103132. doi: 10.1016/j.ecoinf.2025.103132
    [8]
    孙绍哲, 邝慧妍, 叶玉芳, 等. 基于MODIS影像的北极冰水分类方法对比研究[J]. 极地研究, 2025, 37(1): 39−54.

    Sun Shaozhe, Kuang Huiyan, Ye Yufang, et al. Comparative study of five methods for Arctic sea ice and water classification based on MODIS images[J]. Chinese Journal of Polar Research, 2025, 37(1): 39−54.
    [9]
    Tan Weikai, Li J, Xu Linlin, et al. Semiautomated segmentation of Sentinel-1 SAR imagery for mapping sea ice in Labrador coast[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(5): 1419−1432. doi: 10.1109/JSTARS.2018.2806640
    [10]
    王志勇, 孙培蕾, 刘健. 一种联合多特征的极化SAR海冰类型提取方法[J]. 遥感信息, 2020, 35(4): 23−29.

    Wang Zhiyong, Sun Peilei, Liu Jian. A sea ice classification method of polarimetric SAR data by multi-feature combination[J]. Remote Sensing Information, 2020, 35(4): 23−29.
    [11]
    Ji Wei, Fang Zhou, Feng Decai, et al. Semantic segmentation of arctic sea ice in summer from remote sensing satellite images based on BAU-NET[J]. Journal of Applied Remote Sensing, 2022, 16(4): 046514.
    [12]
    Ren Yibin, Xu Huan, Liu Bin, et al. Sea ice and open water classification of SAR images using a deep learning model[C]//IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium. Waikoloa: IEEE, 2020: 3051−3054.
    [13]
    郑付强, 匡定波, 胡勇, 等. 基于U-ASPP-Net的北极独立海冰精细识别方法[J]. 红外与毫米波学报, 2021, 40(6): 798−808.

    Zheng Fuqiang, Kuang Dingbo, Hu Yong, et al. Refined segmentation method based on U-ASPP-Net for Arctic independent sea ice[J]. Journal of Infrared and Millimeter Waves, 2021, 40(6): 798−808.
    [14]
    杨浩. 基于Res-Unet模型的辽东湾遥感影像海冰灾害风险分析[D]. 大连: 大连理工大学, 2024.

    Yang Hao. Analysis of sea ice disaster risk in the Liaodong Bay remote sensing images based on Res-UNet model[D]. Dalian: Dalian University of Technology, 2024.
    [15]
    Liu Ze, Lin Yutong, Cao Yue, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 9992−10002.
    [16]
    邵志远, 赵杰臣, 解龙翔, 等. 基于深度学习和Sentinel-1卫星影像的北极海冰分类精度和影响因素[J]. 海洋学研究, 2024, 42(3): 119−130.

    Shao Zhiyuan, Zhao Jiechen, Xie Longxiang, et al. Classification accuracy and influencing factors of Arctic sea ice based on deep learning and Sentinel-1 satellite imagery[J]. Journal of Marine Sciences, 2024, 42(3): 119−130.
    [17]
    Borisova J, Kuznetsov A, Solovev G, et al. Understanding the limitations of deep transformer models for sea ice forecasting[C]//25th International Conference on Computational Science. Singapore: Springer, 2025: 104−118.
    [18]
    Ren Yibin, Li Xiaofeng, Yang Xiaofeng, et al. Development of a dual-attention U-Net model for sea ice and open water classification on SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4010205.
    [19]
    Petty A A, Bagnardi M, Kurtz N T, et al. Assessment of ICESat-2 sea ice surface classification with Sentinel-2 imagery: implications for freeboard and new estimates of lead and floe geometry[J]. Earth and Space Science, 2021, 8(3): e2020EA001491. doi: 10.1029/2020EA001491
    [20]
    郑付强, 匡定波, 胡勇, 等. 基于Multiloss-SAM-ConvLSTM的北极航道独立海冰运动预测[J]. 红外与毫米波学报, 2022, 41(5): 894−904.

    Zheng Fuqiang, Kuang Dingbo, Hu Yong, et al. Prediction of independent sea ice motion in Arctic channel based on Multiloss-SAM-ConvLSTM[J]. Journal of Infrared and Millimeter Waves, 2022, 41(5): 894−904.
    [21]
    National Snow and Ice Data Center. U. S. national ice center arctic and Antarctic sea ice charts in SIGRID-3 format, Version 1[EB/OL]. (2023−02)[2024−12−06]. https://nsidc.org/data/g10013/versions/1. DOI: 10.7265/4B7S-RN93.
    [22]
    World Meteorological Organization (WMO). WMO Sea-Ice Nomenclature[EB/OL]. WMO-No. 259(2014−03)[2024−12−06]. https://library.wmo.int/zh/records/item/41953-wmo-sea-ice-nomenclature?offset=50.
    [23]
    Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[C]//18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer, 2015: 234−241.
    [24]
    Çiçek Ö, Abdulkadir A, Lienkamp S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation[C]//19th International Conference on Medical Image Computing and Computer-Assisted Intervention. Athens: Springer, 2016: 424−432.
    [25]
    孙晓宇, 孙启振, 沈辉, 等. 1979−2022年北极海冰范围变化特征及趋势分析[J]. 海洋预报, 2023, 40(5): 49−55.

    Sun Xiaoyu, Sun Qizhen, Shen Hui, et al. Analysis of characteristics and trends of Arctic sea ice extent changes from 1979 to 2022[J]. Marine Forecasts, 2023, 40(5): 49−55.
    [26]
    苏海洋. 基于深度学习的北极海冰密集度降尺度分析预报方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2024.

    Su Haiyang. Arctic sea ice concentration downscaling analysis and prediction based on deep learning[D]. Harbin: Harbin Engineering University, 2024.
    [27]
    魏立新, 张占海. 北极海冰变化特征分析[J]. 海洋预报, 2007, 24(4): 42−48.

    Wei Lixin, Zhang Zhanhai. Analysis of Arctic sea ice variability[J]. Marine Forecasts, 2007, 24(4): 42−48.
    [28]
    Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16×16 words: transformers for image recognition at scale[C]//International Conference on Learning Representations. Vienna: OpenReview. net, 2021.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article views (108) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return