Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 47 Issue 12
Dec.  2025
Turn off MathJax
Article Contents
Li Xiaoliang,Huang Guibiao. A study on distribution parameters for individual wave overtopping volume at vertical walls[J]. Haiyang Xuebao,2025, 47(12):84–93 doi: 10.12284/hyxb20250113
Citation: Li Xiaoliang,Huang Guibiao. A study on distribution parameters for individual wave overtopping volume at vertical walls[J]. Haiyang Xuebao,2025, 47(12):84–93 doi: 10.12284/hyxb20250113

A study on distribution parameters for individual wave overtopping volume at vertical walls

doi: 10.12284/hyxb20250113
  • Received Date: 2025-06-08
  • Rev Recd Date: 2025-11-17
  • Available Online: 2025-11-27
  • Publish Date: 2025-12-31
  • Estimating the maximum individual wave overtopping discharge based on the Weibull distribution crucially depends on the accurate determination of its parameters—namely, the shape parameter and the overtopping percentage. Existing research has primarily focused on deep and intermediate water depth conditions, with a lack of systematic analysis on the characteristics of these distribution parameters within the surf zone. This study extends the experimental range of relative water depths to 0.9−4, covering conditions in the surf zone, intermediate depths, and deep water. It specifically investigates the influence of four dimensionless variables—relative water depth, relative crest freeboard, wave steepness, and seabed slope—on the distribution parameters, and establishes a parameter estimation method applicable to these extended conditions. Experimental results indicate that within the range covering the surf zone, both the shape parameter and the overtopping percentage exhibit a unimodal characteristic, resembling the form of solitary waves, as the relative water depth changes. Based on this observation, the study draws on the solitary-wave-like functional form to formulate calculation formulas for the distribution parameters, thereby enabling the prediction of the maximum individual wave overtopping discharge. Compared to existing models, the proposed method demonstrates lower prediction errors across the experimental range, with its advantages being particularly significant in the shallow water regions of the surf zone.
  • loading
  • [1]
    Franco L, de Gerloni M, van der Meer J W. Wave overtopping on vertical and composite breakwaters[C]//Proceedings of the 24th International Conference on Coastal Engineering. Kobe: ASCE, 1994: 1030−1045.
    [2]
    van der Meer J W, Janssen J P F M. Wave run-up and wave overtopping at dikes and revetments[R]. Delft Hydraulics, 1994.
    [3]
    Besley P. Wave overtopping of seawalls, design and assessment manual[R]. Oxfordshire: HR Wallingford Ltd, 1999.
    [4]
    Victor L, van der Meer J W, Troch P. Probability distribution of individual wave overtopping volumes for smooth impermeable steep slopes with low crest freeboards[J]. Coastal Engineering, 2012, 64: 87−101. doi: 10.1016/j.coastaleng.2012.01.003
    [5]
    Hughs S, Thornton C, van der Meer J W, et al. Improvement in describing wave overtopping progresses[C]//Proceedings of the 33rd International Conference on Coastal Engineering 2012.
    [6]
    Nørgaard J Q H, Andersen T L, Burcharth H F. Distribution of individual wave overtopping volumes in shallow water wave conditions[J]. Coastal Engineering, 2014, 83: 15−23. doi: 10.1016/j.coastaleng.2013.09.003
    [7]
    Gallach-Sánchez D. Experimental study of wave overtopping performance of steep low-crested structures[D]. Ghent: Ghent University, 2018.
    [8]
    Salauddin M, O’Sullivan J J, Abolfathi S, et al. New insights in the probability distributions of wave-by-wave overtopping volumes at vertical breakwaters[J]. Scientific Reports, 2022, 12(1): 16228. doi: 10.1038/s41598-022-20464-5
    [9]
    Zanuttigh B, van der Meer J W, Bruce T, et al. Statistical characterisation of extreme overtopping wave volumes[C]//Allsop W, Burgess K. From Sea to Shore—Meeting the Challenges of the Sea: (Coasts, Marine Structures and Breakwaters 2013). London: ICE Publishing, 2013.
    [10]
    Mares-Nasarre P, Molines J, Gómez-Martín M E, et al. Individual wave overtopping volumes on mound breakwaters in breaking wave conditions and gentle sea bottoms[J]. Coastal Engineering, 2020, 159: 103703. doi: 10.1016/j.coastaleng.2020.103703
    [11]
    Goda Y. Random Seas and Design of Maritime Structures[M]. 2nd ed. Singapore: World Scientific Publishing, 2000: 356−359.
    [12]
    Lashley C H, Brown J M, Yelland M J, et al. Comparison of deep-water-parameter-based wave overtopping with wirewall field measurements and social media reports at Crosby (UK)[J]. Coastal Engineering, 2023, 179: 104241, doi: 10.1016/j.coastaleng.2022.104241
    [13]
    Goda Y. A performance test of nearshore wave height prediction with CLASH datasets[J]. Coastal Engineering, 2009, 56(3): 220−229. doi: 10.1016/j.coastaleng.2008.07.003
    [14]
    Li Xiaoliang, Huang Guibiao. Study on effectiveness of solitary-wave-like form based on overtopping data from irregular wave tests[J]. China Ocean Engineering, 2024, 38(4): 701−710. doi: 10.1007/s13344-024-0055-5
    [15]
    李晓亮. 测深法: 基于液压传感器的越浪量测量方法[J]. 水运工程, 2017(2): 123−129. doi: 10.16233/j.cnki.issn1002-4972.2017.02.022

    Li Xiaoliang. Sounding method: a technique of wave overtopping measurement based on the hydraulic pressure sensors[J]. Port & Waterway Engineering, 2017(2): 123−129. doi: 10.16233/j.cnki.issn1002-4972.2017.02.022
    [16]
    Li Xiaoliang. Formula of overtopping discharge of vertical seawall with a form similar to solitary wave function[J]. China Ocean Engineering, 2022, 36(5): 802−807. doi: 10.1007/s13344-022-0071-2
    [17]
    EurOtop. Manual on Wave Overtopping of Sea Defences and Related Structures: An Overtopping Manual Largely Based on European Research, But for Worldwide Application[M]. 2nd ed. 2018.
    [18]
    Battjes J A, Groenendijk H W. Wave height distributions on shallow foreshores[J]. Coastal Engineering, 2000, 40(3): 161−182. doi: 10.1016/S0378-3839(00)00007-7
    [19]
    Li Xiaoliang. A complete formulation of the Goda graph in a single form[J]. Ocean Engineering, 2023, 288: 115916. doi: 10.1016/j.oceaneng.2023.115916
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article views (98) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return