| Citation: | Wang Fayun,Wang Shengjian,Chen Bin, et al. Application of an intelligent wave forecasting method to waters around the islands and reefs in the South China Sea[J]. Haiyang Xuebao,2025, 47(12):136–149 doi: 10.12284/hyxb20250111 |
| [1] |
Xingjian Shi, Zhourong Chen, Hao Wang, et al. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting[C]// Proceedings of Advances in Neural Information Processing Systems 28. NeurIPS, 2015. doi: 10.1016/j.image.2019.115682
|
| [2] |
Pradhan R, Aygun R S, Maskey M, et al. Tropical cyclone intensity estimation using a deep convolutional neural network[J]. IEEE Transactions on Image Processing, 2018, 27(2): 692−702. doi: 10.1109/TIP.2017.2766358
|
| [3] |
Musinguzi A, Akbar M K, Fleming J G, et al. Understanding Hurricane Storm Surge Generation and Propagation Using a Forecasting Model, Forecast Advisories and Best Track in a Wind Model, and Observed Data—Case Study Hurricane Rita[J]. Journal of Marine Science and Engineering, 2019, 7(3): 77. doi: 10.1109/TMM.2018.2867742
|
| [4] |
Changming Dong, Guangjun Xu, Guoqing Han, et al. Recent Developments in Artificial Intelligence in Oceanography[J]. Ocean-Land-Atmosphere Research, 2022, 2022. doi: 10.1109/TIP.2018.2867740
|
| [5] |
Deo M C, Sridhar Naidu C. Real time wave forecasting using neural networks[J]. Ocean Engineering, 1998, 26(3): 191−203. doi: 10.1016/S0029-8018(97)10025-7
|
| [6] |
Mandal S, Prabaharan N. Ocean wave forecasting using recurrent neural networks[J]. Ocean Engineering, 2006, 33(10): 1401−1410. doi: 10.1016/j.oceaneng.2005.08.007
|
| [7] |
Mahjoobi J, Adeli Mosabbeb E. Prediction of significant wave height using regressive support vector machines[J]. Ocean Engineering, 2009, 36(5): 339−347. doi: 10.1016/j.oceaneng.2009.01.001
|
| [8] |
Etemad-Shahidi A, Mahjoobi J. Comparison between M5’ model tree and neural networks for prediction of significant wave height in Lake Superior[J]. Ocean Engineering, 2009, 36(15/16): 1175−1181.
|
| [9] |
Dixit P, Londhe S, Dandawate Y. Removing prediction lag in wave height forecasting using Neuro-Wavelet modeling technique[J]. Ocean Engineering, 2015, 93: 74−83. doi: 10.1016/j.oceaneng.2014.10.009
|
| [10] |
Alexandre E, Cuadra L, Nieto-Borge J C, et al. A hybrid genetic algorithm—extreme learning machine approach for accurate significant wave height reconstruction[J]. Ocean Modelling, 2015, 92: 115−123. doi: 10.1016/j.ocemod.2015.06.010
|
| [11] |
Kumar N K, Savitha R, Mamun A A. Regional ocean wave height prediction using sequential learning neural networks[J]. Ocean Engineering, 2017, 129: 605−612. doi: 10.1016/j.oceaneng.2016.10.033
|
| [12] |
Wang Wenxu, Tang Ruichun, Li Cheng, et al. A BP neural network model optimized by Mind Evolutionary Algorithm for predicting the ocean wave heights[J]. Ocean Engineering, 2018, 162: 98−107. doi: 10.1016/j.oceaneng.2018.04.039
|
| [13] |
Akbarifard S, Radmanesh F. Predicting sea wave height using Symbiotic Organisms Search (SOS) algorithm[J]. Ocean Engineering, 2018, 167: 348−356. doi: 10.1016/j.oceaneng.2018.04.092
|
| [14] |
Londhe S N, Shah S, Dixit P R, et al. A coupled numerical and artificial neural network model for improving location specific wave forecast[J]. Applied Ocean Research, 2016, 59: 483−491. doi: 10.1016/j.apor.2016.07.004
|
| [15] |
James S C, Zhang Yushan, O’Donncha F. A machine learning framework to forecast wave conditions[J]. Coastal Engineering, 2018, 137: 1−10. doi: 10.1016/j.coastaleng.2018.03.004
|
| [16] |
Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735−1780. doi: 10.1162/neco.1997.9.8.1735
|
| [17] |
Fan Shuntao, Xiao Nianhao, Dong Sheng. A novel model to predict significant wave height based on long short-term memory network[J]. Ocean Engineering, 2020, 205: 107298. doi: 10.1016/j.oceaneng.2020.107298
|
| [18] |
Zhou Shuyi, Xie Wenhong, Lu Yuxiang, et al. ConvLSTM-based wave forecasts in the South and East China Seas[J]. Frontiers in Marine Science, 2021, 8: 680079. doi: 10.3389/fmars.2021.680079
|
| [19] |
Gao Zhiyi, Liu Xing, Yv Fujiang, et al. Learning wave fields evolution in North West Pacific with deep neural networks[J]. Applied Ocean Research, 2023, 130: 103393. doi: 10.1016/j.apor.2022.103393
|
| [20] |
秦知朋, 陈永平, 潘毅, 等. 基于BO-LSTM神经网络模型的台风浪波高预报方法研究[J]. 海洋学报, 2024, 46(10): 107−116.
Qin Zhipeng, Chen Yongping, Pan Yi, et al. Research on typhoon wave height prediction method based on BO-LSTM neural network model[J]. Haiyang Xuebao, 2024, 46(10): 107−116.
|
| [21] |
Ris R C, Holthuijsen L H, Booij N. A third-generation wave model for coastal regions: 2. Verification [J]. Journal of Geophysical Research: Oceans, 1999, 104(C4): 7667−7681.
|
| [22] |
邱立国, 梁小力, 陈斌, 等. 西沙群岛宣德环礁波浪分布特征[J]. 热带海洋学报, 2025, 44(5): 50−64.
Qiu Liguo, Liang Xiaoli, Chen Bin, et al. Wave distribution characteristics of Xuande Atoll, Xisha Islands[J]. Journal of Tropical Oceanography, 2025, 44(5): 50−64.
|
| [23] |
Hersbach H, Bell B, Berrisford P, et al. ERA5 hourly data on single levels from 1940 to present[EB/OL]. Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [2024−10−16]. https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview.
|