| Citation: | Hong Kunqiang,Xie Lingling,Huang Jiahui. A comparative study on Omega equation-based vertical velocity diagnosis for the South China Sea[J]. Haiyang Xuebao,2025, 47(12):10–24 doi: 10.12284/hyxb20250109 |
| [1] |
Freilich M A, Mahadevan A. Decomposition of vertical velocity for nutrient transport in the upper ocean[J]. Journal of Physical Oceanography, 2019, 49(6): 1561−1575. doi: 10.1175/JPO-D-19-0002.1
|
| [2] |
Boyd P W, Claustre H, Levy M, et al. Multi-faceted particle pumps drive carbon sequestration in the ocean[J]. Nature, 2019, 568(7752): 327−335. doi: 10.1038/s41586-019-1098-2
|
| [3] |
Pascual A, Ruiz S, Buongiorno Nardelli B, et al. Net primary production in the Gulf Stream sustained by quasi-geostrophic vertical exchanges[J]. Geophysical Research Letters, 2015, 42(2): 441−449. doi: 10.1002/2014GL062569
|
| [4] |
黄小龙, 经志友, 郑瑞玺, 等. 南海西部夏季上升流锋面的次中尺度特征分析[J]. 热带海洋学报, 2020, 39(3): 1−9.
Huang Xiaolong, Jing Zhiyou, Zheng Ruixi, et al. Analysis of submesoscale characteristics of summer upwelling fronts in the western South China Sea[J]. Journal of Tropical Oceanography, 2020, 39(3): 1−9.
|
| [5] |
Chen Ke, Gaube P, Pallàs-Sanz E. On the vertical velocity and nutrient delivery in warm core rings[J]. Journal of Physical Oceanography, 2020, 50(6): 1557−1582. doi: 10.1175/JPO-D-19-0239.1
|
| [6] |
Estrada-Allis S N, Barceló-Llull B, Pallàs-Sanz E, et al. Vertical velocity dynamics and mixing in an anticyclone near the canary islands[J]. Journal of Physical Oceanography, 2019, 49(2): 431−451. doi: 10.1175/JPO-D-17-0156.1
|
| [7] |
Lin Hongyang, Liu Zhiyu, Hu Jianyu, et al. Characterizing meso- to submesoscale features in the South China Sea[J]. Progress in Oceanography, 2020, 188: 102420. doi: 10.1016/j.pocean.2020.102420
|
| [8] |
Rousselet L, Doglioli A M, de Verneil A, et al. Vertical motions and their effects on a biogeochemical tracer in a cyclonic structure finely observed in the Ligurian Sea[J]. Journal of Geophysical Research: Oceans, 2019, 124(6): 3561−3574. doi: 10.1029/2018JC014392
|
| [9] |
Legal C, Klein P, Treguier A M, et al. Diagnosis of the vertical motions in a mesoscale stirring region[J]. Journal of Physical Oceanography, 2007, 37(5): 1413−1424. doi: 10.1175/JPO3053.1
|
| [10] |
Wang Liju, Xie Lingling, Zheng Quanan, et al. Tropical cyclone enhanced vertical transport in the northwestern South China Sea I: mooring observation analysis for Washi (2005)[J]. Estuarine, Coastal and Shelf Science, 2020, 235: 106599. doi: 10.1016/j.ecss.2020.106599
|
| [11] |
Allen J T, Smeed D A, Nurser A J G, et al. Diagnosis of vertical velocities with the QG omega equation: an examination of the errors due to sampling strategy[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2001, 48(2): 315−346. doi: 10.1016/S0967-0637(00)00035-2
|
| [12] |
Lindstrom S S, Pandolph Watts D. Vertical motion in the Gulf Stream near 68°W[J]. Journal of Physical Oceanography, 1994, 24(11): 2321−2333. doi: 10.1175/1520-0485(1994)024<2321:VMITGS>2.0.CO;2
|
| [13] |
Lapeyre G, Klein P. Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory[J]. Journal of Physical Oceanography, 2006, 36(2): 165−176. doi: 10.1175/JPO2840.1
|
| [14] |
Klein P, Isern-Fontanet J, Lapeyre G, et al. Diagnosis of vertical velocities in the upper ocean from high resolution sea surface height[J]. Geophysical Research Letters, 2009, 36(12): L12603.
|
| [15] |
Ponte A L, Klein P, Capet X, et al. Diagnosing surface mixed layer dynamics from high-resolution satellite observations: numerical insights[J]. Journal of Physical Oceanography, 2013, 43(7): 1345−1355. doi: 10.1175/JPO-D-12-0136.1
|
| [16] |
Barceló-Llull B, Pallàs-Sanz E, Sangrà P, et al. Ageostrophic secondary circulation in a subtropical intrathermocline eddy[J]. Journal of Physical Oceanography, 2017, 47(5): 1107−1123. doi: 10.1175/JPO-D-16-0235.1
|
| [17] |
Hu Jianyu, Gan Jianping, Sun Zhenyu, et al. Observed three-dimensional structure of a cold eddy in the southwestern South China Sea[J]. Journal of Geophysical Research: Oceans, 2011, 116(C5): C05016.
|
| [18] |
Rixen M, Allen J T, Pollard R T, et al. Along or across front ocean survey strategy? The estimation of quasi-geostrophic vertical velocities and temperature fluxes[J]. Geophysical Research Letters, 2003, 30(5): 1264.
|
| [19] |
Pietri A, Capet X, d’Ovidio F, et al. Skills and limitations of the adiabatic omega equation: how effective is it to retrieve oceanic vertical circulation at mesoscale and submesoscale?[J]. Journal of Physical Oceanography, 2021, 51(3): 931−954. doi: 10.1175/JPO-D-20-0052.1
|
| [20] |
Xie Lingling, Pallàs-Sanz E, Zheng Quanan, et al. Diagnosis of 3D vertical circulation in the upwelling and frontal zones east of Hainan Island, China[J]. Journal of Physical Oceanography, 2017, 47(4): 755−774. doi: 10.1175/JPO-D-16-0192.1
|
| [21] |
Buongiorno Nardelli B, Mulet S, Iudicone D. Three-dimensional ageostrophic motion and water mass subduction in the Southern Ocean[J]. Journal of Geophysical Research: Oceans, 2018, 123(2): 1533−1562. doi: 10.1002/2017JC013316
|
| [22] |
Sutcliffe R C. A contribution to the problem of development[J]. Quarterly Journal of the Royal Meteorological Society, 1947, 73(317/318): 370−383.
|
| [23] |
Hoskins B J, Draghici I, Davies H C. A new look at the ω-equation[J]. Quarterly Journal of the Royal Meteorological Society, 1978, 104(439): 31−38.
|
| [24] |
Tintoré J, Gomis D, Alonso S, et al. Mesoscale dynamics and vertical motion in the Alborán Sea[J]. Journal of Physical Oceanography, 1991, 21(6): 811−823. doi: 10.1175/1520-0485(1991)021<0811:MDAVMI>2.0.CO;2
|
| [25] |
Viúdez Á, Haney R L, Tintoré J. Circulation in the Alboran see as determined by quasi-synoptic hydrographic observations. Part II: mesoscale ageostrophic motion diagnosed through density dynamical assimilation[J]. Journal of Physical Oceanography, 1996, 26(5): 706−724. doi: 10.1175/1520-0485(1996)026<0706:CITASA>2.0.CO;2
|
| [26] |
Pollard R T, Regier L A. Vorticity and vertical circulation at an ocean front[J]. Journal of Physical Oceanography, 1992, 22(6): 609−625. doi: 10.1175/1520-0485(1992)022<0609:VAVCAA>2.0.CO;2
|
| [27] |
Sanz E P, Viúdez Á. Diagnosing mesoscale vertical motion from horizontal velocity and density data[J]. Journal of Physical Oceanography, 2005, 35(10): 1744−1762. doi: 10.1175/JPO2784.1
|
| [28] |
Giordani H, Planton S. Modeling and analysis of ageostrophic circulation over the Azores oceanic front during the SEMAPHORE experiment[J]. Monthly Weather Review, 2000, 128(7): 2270−2287. doi: 10.1175/1520-0493(2000)128<2270:MAAOAC>2.0.CO;2
|
| [29] |
Giordani H, Prieur L, Caniaux G. Advanced insights into sources of vertical velocity in the ocean[J]. Ocean Dynamics, 2006, 56(5/6): 513−524.
|
| [30] |
谭可易. 南海西北陆架海温盐锋三维结构及季节变化研究[D]. 湛江: 广东海洋大学, 2020.
Tan Keyi. Seasonal variation of three-dimensional structure of thermal and salinity fronts in the northwestern South China Sea[D]. Zhanjiang: Guangdong Ocean University, 2020.
|
| [31] |
杨潇霄, 曹海锦, 经志友. 南海上层海洋次中尺度过程空间差异和季节变化特征[J]. 热带海洋学报, 2021, 40(5): 10−24.
Yang Xiaoxiao, Cao Haijin, Jing Zhiyou. Spatial and seasonal differences of the upper-ocean submesoscale processes in the South China Sea[J]. Journal of Tropical Oceanography, 2021, 40(5): 10−24.
|
| [32] |
张雨辰, 张新城, 张金超, 等. 南海亚中尺度过程的时空特征与垂向热量输运研究[J]. 中国海洋大学学报, 2020, 50(12): 1−11.
Zhang Yuchen, Zhang Xincheng, Zhang Jinchao, et al. Spatiotemporal characteristics and vertical heat transport of submesoscale processes in the South China Sea[J]. Periodical of Ocean University of China, 2020, 50(12): 1−11.
|
| [33] |
Zhu Yaohua, Wang Dingqi, Wang Yonggang, et al. Vertical velocity and transport in the South China Sea[J]. Acta Oceanologica Sinica, 2022, 41(7): 13−25. doi: 10.1007/s13131-021-1954-4
|
| [34] |
Zhang Zhiwei, Zhang Yuchen, Qiu Bo, et al. Spatiotemporal characteristics and generation mechanisms of submesoscale currents in the northeastern South China Sea revealed by numerical simulations[J]. Journal of Geophysical Research: Oceans, 2020, 125(2): e2019JC015404. doi: 10.1029/2019JC015404
|
| [35] |
郑曼立. 南海西北陆架水体及营养盐三维输运与季节变化研究[D]. 湛江: 广东海洋大学, 2019.
Zheng Manli. Seasonal variability of 3D volume and nutrient transports in the northwestern South China Sea[D]. Zhanjiang: Guangdong Ocean University, 2019.
|
| [36] |
Lu Wenfang, Yan Xiaohai, Han Lu, et al. One-dimensional ocean model with three types of vertical velocities: a case study in the South China Sea[J]. Ocean Dynamics, 2017, 67(2): 253−262. doi: 10.1007/s10236-016-1029-9
|
| [37] |
黄家辉, 谢玲玲, 李强, 等. eSQG方法在南海垂向流速诊断中的应用研究[J]. 海洋学报, 2022, 44(12): 55−69.
Huang Jiahui, Xie Lingling, Li Qiang, et al. Application of eSQG method in vertical velocity diagnosis in the South China Sea[J]. Haiyang Xuebao, 2022, 44(12): 55−69.
|
| [38] |
Chelton D B, Schlax M G, Samelson R M. Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography, 2011, 91(2): 167−216. doi: 10.1016/j.pocean.2011.01.002
|
| [39] |
Qiu Bo, Chen Shuiming, Klein P, et al. Reconstructability of three-dimensional upper-ocean circulation from SWOT sea surface height measurements[J]. Journal of Physical Oceanography, 2016, 46(3): 947−963. doi: 10.1175/JPO-D-15-0188.1
|
| [40] |
Qiu Bo, Chen Shuiming, Klein P, et al. Reconstructing upper-ocean vertical velocity field from sea surface height in the presence of unbalanced motion[J]. Journal of Physical Oceanography, 2020, 50(1): 55−79. doi: 10.1175/JPO-D-19-0172.1
|
| [41] |
Viúdez Á, Tintoré J, Haney R L. About the nature of the generalized omega equation[J]. Journal of the Atmospheric Sciences, 1996, 53(5): 787−795. doi: 10.1175/1520-0469(1996)053<0787:ATNOTG>2.0.CO;2
|
| [42] |
乐洲, 黄科, Mantravadi V S. 2000−2015年夏秋季孟加拉湾湾口区涡流相互作用能量学特征[J]. 热带海洋学报, 2020, 39(2): 11−24.
Le Zhou, Huang Ke, Mantravadi V S. Energy characteristics of eddy-mean flow interaction in the estuary of Bay of Bengal in summer and autumn during 2000−2015[J]. Journal of Tropical Oceanography, 2020, 39(2): 11−24.
|
| [43] |
Böning C W, Budich R G. Eddy dynamics in a primitive equation model: sensitivity to horizontal resolution and friction[J]. Journal of Physical Oceanography, 1992, 22(4): 361−381. doi: 10.1175/1520-0485(1992)022<0361:EDIAPE>2.0.CO;2
|
| [44] |
Li Jianing, Dong Jihai, Yang Qingxuan, et al. Spatial-temporal variability of submesoscale currents in the South China Sea[J]. Journal of Oceanology and Limnology, 2019, 37(2): 474−485. doi: 10.1007/s00343-019-8077-1
|
| [45] |
Zhang Jinchao, Zhang Zhiwei, Qiu Bo, et al. Seasonal modulation of submesoscale kinetic energy in the upper ocean of the northeastern South China Sea[J]. Journal of Geophysical Research: Oceans, 2021, 126(11): e2021JC017695. doi: 10.1029/2021JC017695
|
| [46] |
杨少磊. 越南冷涡及其上升流的观测与研究[D]. 青岛: 中国海洋大学, 2008.
Yang Shaolei. Observations and research on vietnam cold eddies and eddy-induced upwelling current[D]. Qingdao: Ocean University of China, 2008.
|
| [47] |
郑全安, 谢玲玲, 郑志文, 等. 南海中尺度涡研究进展[J]. 海洋科学进展, 2017, 35(2): 131−158.
Zheng Quanan, Xie Lingling, Zheng Zhiwen, et al. Progress in research of mesoscale eddies in the South China Sea[J]. Advances in Marine Science, 2017, 35(2): 131−158.
|
| [48] |
Xie Lingling, Zheng Quanan. New insight into the South China Sea: Rossby normal modes[J]. Acta Oceanologica Sinica, 2017, 36(7): 1−3. doi: 10.1007/s13131-017-1077-0
|
| [49] |
王晓慧. 南海地区Argo轨迹资料处理与应用研究[D]. 长沙: 国防科技大学, 2017.
Wang Xiaohui. Research on processing and application of Argo trajectory data in South China Sea[D]. Changsha: National University of Defense Technology, 2017.
|
| [50] |
吴日升, 李立. 南海上升流研究概述[J]. 台湾海峡, 2003, 22(2): 269−277.
Wu Risheng, Li Li. Summarization of study on upwelling system in the South China Sea[J]. Journal of Oceanography in Taiwan Strait, 2003, 22(2): 269−277.
|
| [51] |
经志友, 齐义泉, 华祖林. 南海北部陆架区夏季上升流数值研究[J]. 热带海洋学报, 2008, 27(3): 1−8.
Jing Zhiyou, Qi Yiquan, Hua Zulin. Numerical study on summer upwelling over northern continental shelf of South China Sea[J]. Journal of Tropical Oceanography, 2008, 27(3): 1−8.
|
| [52] |
Liu Sumin, Hong Bo, Wang Guifen, et al. Physical structure and phytoplankton community off the eastern Hainan coast during summer 2015[J]. Acta Oceanologica Sinica, 2020, 39(11): 103−114. doi: 10.1007/s13131-020-1668-z
|
| [53] |
Lu Yuanzheng, Cen Xianrong, Guo Shuangxi, et al. Spatial variability of diapycnal mixing in the South China Sea inferred from density overturn analysis[J]. Journal of Physical Oceanography, 2021, 51(11): 3417−3434. doi: 10.1175/JPO-D-20-0241.1
|
| [54] |
Wang Xiaowei, Peng Shiqiu, Liu Zhiyu, et al. Tidal mixing in the South China Sea: an estimate based on the internal tide energetics[J]. Journal of Physical Oceanography, 2016, 46(1): 107−124. doi: 10.1175/JPO-D-15-0082.1
|
| [55] |
陈更新. 南海中尺度涡的时空特征研究[D]. 青岛: 中国科学院海洋研究所, 2010.
Chen Gengxin. A study on the spatiotemporal characteristics of mesoscale eddies in the South China Sea[D]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences, 2010.
|
| [56] |
兰健, 洪洁莉, 李丕学. 南海西部夏季冷涡的季节变化特征[J]. 地球科学进展, 2006, 21(11): 1145−1152.
Lan Jian, Hong Jieli, Li Pixue. Seasonal variability of cool-core eddy in the Western South China Sea[J]. Advances in Earth Science, 2006, 21(11): 1145−1152.
|
| [57] |
Masumoto Y, Sasaki H, Kagimoto T, et al. A fifty-year eddy-resolving simulation of the world ocean-preliminary outcomes of OFES (OGCM for the Earth Simulator)[J]. Journal of the Earth Simulator, 2004, 1: 35−56.
|
| [58] |
Yang Peiran, Jing Zhao, Sun Bingrong, et al. On the upper-ocean vertical eddy heat transport in the Kuroshio Extension. Part I: variability and dynamics[J]. Journal of Physical Oceanography, 2021, 51(1): 229−246. doi: 10.1175/JPO-D-20-0068.1
|