Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 47 Issue 12
Dec.  2025
Turn off MathJax
Article Contents
Hu Nanxing,Yuan Hongchun. Time space hybrid network XLTNET: A high-precision current velocity prediction model targeting local sea areas in the South Pacific[J]. Haiyang Xuebao,2025, 47(12):165–184 doi: 10.12284/hyxb20250105
Citation: Hu Nanxing,Yuan Hongchun. Time space hybrid network XLTNET: A high-precision current velocity prediction model targeting local sea areas in the South Pacific[J]. Haiyang Xuebao,2025, 47(12):165–184 doi: 10.12284/hyxb20250105

Time space hybrid network XLTNET: A high-precision current velocity prediction model targeting local sea areas in the South Pacific

doi: 10.12284/hyxb20250105
  • Received Date: 2025-06-25
  • Rev Recd Date: 2025-10-29
  • Publish Date: 2025-12-31
  • Accurate long-term forecasting of ocean current fluid is crucial for marine science research, yet existing deep learning models generally suffer from error accumulation and insufficient long-term stability when processing high-dimensional spatiotemporal sequences. To address this challenge, this study proposes an innovative spatiotemporal fusion network, XLTNET. The model is based on an encoder-decoder architecture, with its core lying in the efficient fusion of two key modules: an improved Swin Transformer that adopts the K-Nearest Neighbors (KNN) sparse self-attention mechanism for precisely capturing multi-scale spatial dynamics, and an extended Long Short-Term Memory network (xLSTM) for enhancing the modeling of long-range temporal dependencies. Experiments were conducted based on the reanalysis dataset from the Copernicus Marine Service, utilizing five ocean elements including ocean current fluid (U and V components), temperature, salinity, and height. The results demonstrate that XLTNET exhibits superior performance and stability in long-term forecasting tasks. In the 15-day forecast, XLTNET was the only model to maintain an R-value above 0.7 in both flow directions. Its U-direction R-value improved by 7.3%, 18.0%, and 20.7% compared to ASTMEN, ConvLSTM, and LSTM, respectively, while its V-direction R-value showed improvements of 8.7%, 15.6%, and 17.4%. Furthermore, ablation studies confirmed the necessity of each model component and the deep fusion strategy. This research provides a high-performance solution for high-precision, long-term ocean current fluid forecasting.
  • loading
  • [1]
    Hu Dunxin, Wu Lixin, Cai Wenju, et al. Pacific western boundary currents and their roles in climate[J]. Nature, 2015, 522(7556): 299−308. doi: 10.1038/nature14504
    [2]
    Ganachaud A, Cravatte S, Melet A, et al. The Southwest Pacific Ocean circulation and climate experiment (SPICE)[J]. Journal of Geophysical Research: Oceans, 2014, 119(11): 7660−7686. doi: 10.1002/2013JC009678
    [3]
    Roemmich D, Gilson J, Davis R, et al. Decadal spinup of the South Pacific subtropical gyre[J]. Journal of Physical Oceanography, 2007, 37(2): 162−173. doi: 10.1175/JPO3004.1
    [4]
    刘超. 热带太平洋海温准十年变率及其对西北太平洋热带气旋的影响[D]. 南京: 南京信息工程大学, 2022.

    Liu Chao. Quasi-decadal variability of sea surface temperature in the tropical pacific and its impact on tropical cyclones in the Northwest Pacific[D]. Nanjing: Nanjing University of Information Science and Technology, 2022.
    [5]
    石世玮. 热带太平洋海表盐度年代际变化特征及其对ENSO的调制作用[D]. 南京: 南京信息工程大学, 2021.

    Shi Shiwei. Interdecadal variability of sea surface salinity in the Tropical Pacific and its modulation on ENSO[D]. Nanjing: Nanjing University of Information Science and Technology, 2021.
    [6]
    冯志萍. 洪堡洋流生态系统结构及中上层重要经济渔业资源对气候变化的响应研究[D]. 上海: 上海海洋大学, 2024.

    Feng Zhiping. Response of ecosystem structure and pelagic important economic fishery resources in the Humboldt current system to climate[D]. Shanghai: Shanghai Ocean University, 2024.
    [7]
    Cai Wenju, Wang Guojian, Dewitte B, et al. Increased variability of eastern Pacific El Niño under greenhouse warming[J]. Nature, 2018, 564(7735): 201−206. doi: 10.1038/s41586-018-0776-9
    [8]
    Van Sebille E, Wilcox C, Lebreton L, et al. A global inventory of small floating plastic debris[J]. Environmental Research Letters, 2015, 10(12): 124006. doi: 10.1088/1748-9326/10/12/124006
    [9]
    Wang J L, Zhuang Hanqi, Chérubin L M, et al. Medium-term forecasting of loop current Eddy Cameron and Eddy Darwin formation in the Gulf of Mexico with a divide-and-conquer machine learning approach[J]. Journal of Geophysical Research: Oceans, 2019, 124(8): 5586−5606. doi: 10.1029/2019JC015172
    [10]
    黄奇华, 吴雄斌, 岳显昌, 等. 基于BP神经网络的高频地波雷达海流空间插值[J]. 海洋学报, 2019, 41(5): 138−145.

    Huang Qihua, Wu Xiongbin, Yue Xianchang, et al. Spatial interpolation of current mapped by HF surface wave radar using BP neural network[J]. Haiyang Xuebao, 2019, 41(5): 138−145.
    [11]
    董世超. 基于ARIMA-BP神经网络模型海流流速预测研究[J]. 中国科技信息, 2014(2): 86−88.

    Dong Shichao. Current prediction research based on ARIMA-BP neural network abstract[J]. China Science and Technology Information, 2014(2): 86−88.
    [12]
    Bayindir C. Predicting the ocean currents using deep learning[J]. TWMS Journal of Applied and Engineering Mathematics, 2023, 13(1): 373−385.
    [13]
    Zulfa I I, Novitasari D C R, Setiawan F, et al. Prediction of sea surface current velocity and direction using LSTM[J]. Indonesian Journal of Electronics and Instrumentation Systems, 2021, 11(1): 93−102. doi: 10.22146/ijeis.63669
    [14]
    Immas A, Do N, Alam M R. Real-time in situ prediction of ocean currents[J]. Ocean Engineering, 2021, 228: 108922. doi: 10.1016/j.oceaneng.2021.108922
    [15]
    Li Xin, Wang Fusheng, Song Tao, et al. ASTMEN: an adaptive spatiotemporal and multi-element fusion network for ocean surface currents forecasting[J]. Frontiers in Marine Science, 2023, 10: 1281387. doi: 10.3389/fmars.2023.1281387
    [16]
    袁红春, 管琦, 张天蛟. 基于LSTM-BP组合模型的南太平洋海流流速预测[J]. 海洋湖沼通报, 2022, 44(4): 10−16, doi: 10.13984/j.cnki.cn37-1141.2022.04.002

    Yuan Hongchun, Guan Qi, Zhang Tianjiao. South Pacific current forecast based on LSTM-BP neural network[J]. Transactions of Oceanology and Limnology, 2022, 44(4): 10−16, doi: 10.13984/j.cnki.cn37-1141.2022.04.002
    [17]
    Thongniran N, Vateekul P, Jitkajornwanich K, et al. Spatio-temporal deep learning for ocean current prediction based on HF radar data[C]//Proceedings of the 2019 16th International Joint Conference on Computer Science and Software Engineering (JCSSE). Chonburi: IEEE, 2019: 254−259.
    [18]
    Liu Jingjing, Yang Jinkun, Liu Kexiu, et al. Ocean current prediction using the weighted pure attention mechanism[J]. Journal of Marine Science and Engineering, 2022, 10(5): 592. doi: 10.3390/jmse10050592
    [19]
    De Bézenac E, Pajot A, Gallinari P. Deep learning for physical processes: incorporating prior scientific knowledge[J]. Journal of Statistical Mechanics: Theory and Experiment, 2019, 2019(12): 124009. doi: 10.1088/1742-5468/ab3195
    [20]
    Xiao Changjiang, Chen Nengcheng, Hu Chuli, et al. Short and mid-term sea surface temperature prediction using time-series satellite data and LSTM-AdaBoost combination approach[J]. Remote Sensing of Environment, 2019, 233: 111358. doi: 10.1016/j.rse.2019.111358
    [21]
    Shih S Y, Sun Fankeng, Lee H Y. Temporal pattern attention for multivariate time series forecasting[J]. Machine Learning, 2019, 108(8): 1421−1441.
    [22]
    Zhang Zhiyuan, Yan Yan, Wang Zihe, et al. SDPNet: a novel deeplearning method for ocean surface current prediction[J]. Journal of Physics: Conference Series, 2023, 2486(1): 012066. doi: 10.1088/1742-6596/2486/1/012066
    [23]
    Panboonyuen T. SEA-ViT: forecasting sea surface currents using a vision transformer and GRU-based spatio-temporal covariance model[C]//Proceedings of the 2025 17th International Conference on Knowledge and Smart Technology (KST). Bangkok: IEEE, 2025: 1−6.
    [24]
    Cunha W, Viegas F, França C, et al. A comparative survey of instance selection methods applied to non-neural and transformer-based text classification[J]. ACM Computing Surveys, 2023, 55(13s): 265.
    [25]
    余为, 温健. 洪堡洋流系统内重要渔业资源对气候和海洋环境变化的响应研究进展[J]. 上海海洋大学学报, 2022, 31(3): 620−630.

    Yu Wei, Wen Jian. Review on the response of important fishery resources to the climatic and environmental variability in the Humboldt Current System[J]. Journal of Shanghai Ocean University, 2022, 31(3): 620−630.
    [26]
    Greff K, Srivastava R K, Koutník J, et al. LSTM: a search space odyssey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10): 2222−2232. doi: 10.1109/TNNLS.2016.2582924
    [27]
    Beck M, Pöppel K, Spanring M, et al. xLSTM: extended long short-term memory[C]//Proceedings of the 38th International Conference on Neural Information Processing Systems. Vancouver: Curran Associates Inc. , 2025: 3417.
    [28]
    Alharthi M, Mahmood A. xLSTMTime: long-term time series forecasting with xLSTM[J]. AI, 2024, 5(3): 1482−1495. doi: 10.3390/ai5030071
    [29]
    Liu Ze, Lin Yutong, Cao Yue, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 9992−10002.
    [30]
    Stramma L, Peterson R G, Tomczak M. The South Pacific current[J]. Journal of Physical Oceanography, 1995, 25(1): 77−91. doi: 10.1175/1520-0485(1995)025<0077:TSPC>2.0.CO;2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(7)

    Article views (15) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return