| Citation: | Xu Zheng,Fang Wei. A predictive model integrating multimodal meteorological information and spatiotemporal evolution of MJO[J]. Haiyang Xuebao,2025, 47(10):126–136 doi: 10.12284/hyxb20250101 |
| [1] |
徐邦琪, 臧钰歆, 朱志伟, 等. 时空投影模型(STPM)的次季节至季节(S2S)预测应用进展[J]. 大气科学学报, 2020, 43(1): 212−224.
Xu Bangqi, Zhang Yuxin, Zhu Zhiwei, et al. Subseasonal-to-seasonal (S2S) prediction using the spatial-temporal projection model (STPM)[J]. Transactions of Atmospheric Sciences, 2020, 43(1): 212−224.
|
| [2] |
伍继业, 谢欣芮, 罗京佳. 基于改进版NUIST CFS1.1的热带大气季节内信号及其对中国气温降水影响的预测评估[J]. 大气科学学报, 2024, 47(2): 284−299.
Wu Jiye, Xie Xinrui, Luo Jingjia. Prediction of tropical intraseasonal oscillations and their impacts on air temperature and precipitation in China using the upgraded version of NUIST CFS1.1[J]. Transactions of Atmospheric Sciences, 2024, 47(2): 284−299.
|
| [3] |
White C J, Domeisen D I V, Acharya N, et al. Advances in the application and utility of subseasonal-to-seasonal predictions[J]. Bulletin of the American Meteorological Society, 2022, 103(6): E1448−E1472. doi: 10.1175/BAMS-D-20-0224.1
|
| [4] |
李力锋, 陈雄, 李崇银, 等. 2019年2−3月中国南方持续性降水成因及其与MJO的关系[J]. 气象, 2022, 48(9): 1090−1100.
Li Lifeng, Chen Xiong, Li Chongyin, et al. Causes of persistent precipitation over southern China during February-March 2019 and the relationship with MJO[J]. Meteorological Monthly, 2022, 48(9): 1090−1100.
|
| [5] |
Ratna S B, Sabeerali C T, Sharma T, et al. Combined influence of El Niño, IOD and MJO on the Indian Summer Monsoon Rainfall: case study for the years 1997 and 2015[J]. Atmospheric Research, 2024, 299: 107214. doi: 10.1016/j.atmosres.2023.107214
|
| [6] |
Cowan T, Wheeler M C, Marshall A G. The combined influence of the Madden-Julian oscillation and El Niño-Southern Oscillation on Australian rainfall[J]. Journal of Climate, 2023, 36(2): 313−334. doi: 10.1175/JCLI-D-22-0357.1
|
| [7] |
Zhou Wenyu, Yang Da, Xie Shangping, et al. Amplified Madden-Julian oscillation impacts in the Pacific-North America region[J]. Nature Climate Change, 2020, 10(7): 654−660. doi: 10.1038/s41558-020-0814-0
|
| [8] |
Yao Junchen, Liu Xiangwen, Wu Tongwen, et al. Progress of MJO prediction at CMA from phase I to phase II of the sub-seasonal to seasonal prediction project[J]. Advances in Atmospheric Sciences, 2023, 40(10): 1799−1815. doi: 10.1007/s00376-023-2351-z
|
| [9] |
Wheeler M C, Hendon H H. An all-season real-time multivariate MJO index: development of an index for monitoring and prediction[J]. Monthly Weather Review, 2004, 132(8): 1917−1932. doi: 10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2
|
| [10] |
Zhu Zhiwei, Li T, Hsu P C, et al. A spatial-temporal projection model for extended-range forecast in the tropics[J]. Climate Dynamics, 2015, 45(3/4): 1085−1098.
|
| [11] |
Wu Jiye, Li Yue, Luo Jingjia, et al. Prediction and predictability of boreal winter MJO using a multi-member subseasonal to seasonal forecast system of NUIST (NUIST CFS 1.1)[J]. Climate Dynamics, 2024, 62(5): 3003−3026. doi: 10.1007/s00382-023-07047-4
|
| [12] |
Dey A, Chattopadhyay R, Sahai A K, et al. MJO prediction skill using IITM extended range prediction system and comparison with ECMWF S2S[J]. Pure and Applied Geophysics, 2020, 177(10): 5067−5079. doi: 10.1007/s00024-020-02487-z
|
| [13] |
Yuval J, O’Gorman P A. Stable machine-learning parameterization of subgrid processes for climate modeling at a range of resolutions[J]. Nature communications, 2020, 11(1): 3295. doi: 10.1038/s41467-020-17142-3
|
| [14] |
Toms B A, Barnes E A, Ebert-Uphoff I. Physically interpretable neural networks for the geosciences: applications to earth system variability[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(9): e2019MS002002. doi: 10.1029/2019MS002002
|
| [15] |
Weyn J A, Durran D R, Caruana R. Improving data-driven global weather prediction using deep convolutional neural networks on a cubed sphere[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(9): e2020MS002109. doi: 10.1029/2020MS002109
|
| [16] |
杨淑贤, 零丰华, 应武杉, 等. 人工智能技术气候预测应用简介[J]. 大气科学学报, 2022, 45(5): 641−659.
Yang Shuxian, Ling Fenghua, Ying Wushan, et al. A brief overview of the application of artificial intelligence to climate prediction[J]. Transactions of Atmospheric Sciences, 2022, 45(5): 641−659.
|
| [17] |
Kim H, Ham Y G, Joo Y S, et al. Deep learning for bias correction of MJO prediction[J]. Nature Communications, 2021, 12(1): 3087.
|
| [18] |
Delaunay A, Christensen H M. Interpretable deep learning for probabilistic MJO prediction[J]. Geophysical Research Letters, 2022, 49(16): e2022GL098566. doi: 10.1029/2022GL098566
|
| [19] |
Shin N Y, Kim D, Kang D, et al. Deep learning reveals moisture as the primary predictability source of MJO[J]. npj Climate and Atmospheric Science, 2024, 7(1): 11. doi: 10.1038/s41612-023-00561-6
|
| [20] |
Shin N Y, Kang D, Kim D, et al. Data-driven investigation on the boreal summer MJO predictability[J]. npj Climate and Atmospheric Science, 2024, 7(1): 248. doi: 10.1038/s41612-024-00799-8
|
| [21] |
Chen Lei, Zhong Xiaohui, Li Hao, et al. A machine learning model that outperforms conventional global subseasonal forecast models[J]. Nature Communications, 2024, 15(1): 6425. doi: 10.1038/s41467-024-50714-1
|
| [22] |
胡家晖, 陆波, 李昊, 等. 人工智能模型“风顺”对中国区域降水技巧检验[J]. 大气科学学报, 2025, 48(3): 366−376.
Hu Jiahui, Lu Bo, Li Hao, et al. Skill test of the artificial intelligence model “Fengshun” for precipitation forecasting in China[J]. Transactions of Atmospheric Sciences, 2025, 48(3): 366−376.
|
| [23] |
张浩睿, 周磊. 热带季节内振荡在印尼海区域东传路径的分布及其机制[J]. 海洋学报, 2023, 45(10): 13−30.
Zhang Haorui, Zhou Lei. The distribution of eastward propagating pathways of the Tropical Intraseasonal Oscillation and its mechanism in the Maritime Continent[J]. Haiyang Xuebao, 2023, 45(10): 13−30.
|
| [24] |
Dai Kuai, Li Xutao, Ma Chi, et al. Learning spatial-temporal consistency for satellite image sequence prediction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4104517.
|
| [25] |
Chen Guosen. Deciphering chaos in the Madden-Julian oscillation[J]. npj Climate and Atmospheric Science, 2024, 7(1): 311. doi: 10.1038/s41612-024-00870-4
|
| [26] |
Li Hongliang, Zhang Nong, Xu Zhewen, et al. DK-STN: a domain knowledge embedded spatio-temporal network model for MJO forecast[J/OL]. Expert Systems with Applications, Forthcoming, 2023[2023−09−18][2025−07−17]. https://dx.doi.org/10.2139/ssrn.4574792.
|
| [27] |
Liu Yumin, Duffy K, Dy J G, et al. Explainable deep learning for insights in El Niño and river flows[J]. Nature Communications, 2023, 14(1): 339. doi: 10.1038/s41467-023-35968-5
|