Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 47 Issue 10
Oct.  2025
Turn off MathJax
Article Contents
Xu Zheng,Fang Wei. A predictive model integrating multimodal meteorological information and spatiotemporal evolution of MJO[J]. Haiyang Xuebao,2025, 47(10):126–136 doi: 10.12284/hyxb20250101
Citation: Xu Zheng,Fang Wei. A predictive model integrating multimodal meteorological information and spatiotemporal evolution of MJO[J]. Haiyang Xuebao,2025, 47(10):126–136 doi: 10.12284/hyxb20250101

A predictive model integrating multimodal meteorological information and spatiotemporal evolution of MJO

doi: 10.12284/hyxb20250101
  • Received Date: 2025-07-17
  • Rev Recd Date: 2025-10-28
  • Available Online: 2025-11-04
  • Publish Date: 2025-10-31
  • The Madden-Julian Oscillation (MJO), as the primary mode of tropical intraseasonal variability, plays a critical role in improving subseasonal prediction skill. However, due to its multi-scale evolutionary characteristics and highly nonlinear dynamical processes, existing prediction methods still struggle to effectively capture the complex spatiotemporal structure of MJO. To address this issue, we propose a novel prediction model named MISM (Multi-modal data and Integrated Spatiotemporal features for MJO prediction), which integrates multimodal inputs and spatiotemporal feature extraction. The model jointly leverages historical Real-time Multivariate MJO (RMM) indices and multiple meteorological variables as inputs. It constructs a spatial feature extraction module based on Squeeze-and-Excitation (SE) blocks, convolutional layers, and the Swin Transformer, as well as an autoregressive attention mechanism for nonlinear temporal modeling. Experimental results demonstrate that the MISM model extends predictive skill to beyond 30 d and shows overall superior performance compared with traditional dynamical and statistical methods in long-lead forecasts beyond 25 d. Furthermore, saliency maps are utilized to analyze the contribution regions of meteorological factors. The results reveal that the western Pacific and the Indonesian archipelago consistently exhibit high sensitivity across different lead times, with oceanic regions generally contributing more than land areas. Water vapor and sea surface temperature anomalies play a more prominent role in short- to medium-term forecasts, while low-level wind fields and convective activity contribute more significantly in longer-term forecasts. High-level circulation exerts a stable influence across all lead times, highlighting the model’s ability to capture the mechanisms of MJO evolution.
  • loading
  • [1]
    徐邦琪, 臧钰歆, 朱志伟, 等. 时空投影模型(STPM)的次季节至季节(S2S)预测应用进展[J]. 大气科学学报, 2020, 43(1): 212−224.

    Xu Bangqi, Zhang Yuxin, Zhu Zhiwei, et al. Subseasonal-to-seasonal (S2S) prediction using the spatial-temporal projection model (STPM)[J]. Transactions of Atmospheric Sciences, 2020, 43(1): 212−224.
    [2]
    伍继业, 谢欣芮, 罗京佳. 基于改进版NUIST CFS1.1的热带大气季节内信号及其对中国气温降水影响的预测评估[J]. 大气科学学报, 2024, 47(2): 284−299.

    Wu Jiye, Xie Xinrui, Luo Jingjia. Prediction of tropical intraseasonal oscillations and their impacts on air temperature and precipitation in China using the upgraded version of NUIST CFS1.1[J]. Transactions of Atmospheric Sciences, 2024, 47(2): 284−299.
    [3]
    White C J, Domeisen D I V, Acharya N, et al. Advances in the application and utility of subseasonal-to-seasonal predictions[J]. Bulletin of the American Meteorological Society, 2022, 103(6): E1448−E1472. doi: 10.1175/BAMS-D-20-0224.1
    [4]
    李力锋, 陈雄, 李崇银, 等. 2019年2−3月中国南方持续性降水成因及其与MJO的关系[J]. 气象, 2022, 48(9): 1090−1100.

    Li Lifeng, Chen Xiong, Li Chongyin, et al. Causes of persistent precipitation over southern China during February-March 2019 and the relationship with MJO[J]. Meteorological Monthly, 2022, 48(9): 1090−1100.
    [5]
    Ratna S B, Sabeerali C T, Sharma T, et al. Combined influence of El Niño, IOD and MJO on the Indian Summer Monsoon Rainfall: case study for the years 1997 and 2015[J]. Atmospheric Research, 2024, 299: 107214. doi: 10.1016/j.atmosres.2023.107214
    [6]
    Cowan T, Wheeler M C, Marshall A G. The combined influence of the Madden-Julian oscillation and El Niño-Southern Oscillation on Australian rainfall[J]. Journal of Climate, 2023, 36(2): 313−334. doi: 10.1175/JCLI-D-22-0357.1
    [7]
    Zhou Wenyu, Yang Da, Xie Shangping, et al. Amplified Madden-Julian oscillation impacts in the Pacific-North America region[J]. Nature Climate Change, 2020, 10(7): 654−660. doi: 10.1038/s41558-020-0814-0
    [8]
    Yao Junchen, Liu Xiangwen, Wu Tongwen, et al. Progress of MJO prediction at CMA from phase I to phase II of the sub-seasonal to seasonal prediction project[J]. Advances in Atmospheric Sciences, 2023, 40(10): 1799−1815. doi: 10.1007/s00376-023-2351-z
    [9]
    Wheeler M C, Hendon H H. An all-season real-time multivariate MJO index: development of an index for monitoring and prediction[J]. Monthly Weather Review, 2004, 132(8): 1917−1932. doi: 10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2
    [10]
    Zhu Zhiwei, Li T, Hsu P C, et al. A spatial-temporal projection model for extended-range forecast in the tropics[J]. Climate Dynamics, 2015, 45(3/4): 1085−1098.
    [11]
    Wu Jiye, Li Yue, Luo Jingjia, et al. Prediction and predictability of boreal winter MJO using a multi-member subseasonal to seasonal forecast system of NUIST (NUIST CFS 1.1)[J]. Climate Dynamics, 2024, 62(5): 3003−3026. doi: 10.1007/s00382-023-07047-4
    [12]
    Dey A, Chattopadhyay R, Sahai A K, et al. MJO prediction skill using IITM extended range prediction system and comparison with ECMWF S2S[J]. Pure and Applied Geophysics, 2020, 177(10): 5067−5079. doi: 10.1007/s00024-020-02487-z
    [13]
    Yuval J, O’Gorman P A. Stable machine-learning parameterization of subgrid processes for climate modeling at a range of resolutions[J]. Nature communications, 2020, 11(1): 3295. doi: 10.1038/s41467-020-17142-3
    [14]
    Toms B A, Barnes E A, Ebert-Uphoff I. Physically interpretable neural networks for the geosciences: applications to earth system variability[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(9): e2019MS002002. doi: 10.1029/2019MS002002
    [15]
    Weyn J A, Durran D R, Caruana R. Improving data-driven global weather prediction using deep convolutional neural networks on a cubed sphere[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(9): e2020MS002109. doi: 10.1029/2020MS002109
    [16]
    杨淑贤, 零丰华, 应武杉, 等. 人工智能技术气候预测应用简介[J]. 大气科学学报, 2022, 45(5): 641−659.

    Yang Shuxian, Ling Fenghua, Ying Wushan, et al. A brief overview of the application of artificial intelligence to climate prediction[J]. Transactions of Atmospheric Sciences, 2022, 45(5): 641−659.
    [17]
    Kim H, Ham Y G, Joo Y S, et al. Deep learning for bias correction of MJO prediction[J]. Nature Communications, 2021, 12(1): 3087.
    [18]
    Delaunay A, Christensen H M. Interpretable deep learning for probabilistic MJO prediction[J]. Geophysical Research Letters, 2022, 49(16): e2022GL098566. doi: 10.1029/2022GL098566
    [19]
    Shin N Y, Kim D, Kang D, et al. Deep learning reveals moisture as the primary predictability source of MJO[J]. npj Climate and Atmospheric Science, 2024, 7(1): 11. doi: 10.1038/s41612-023-00561-6
    [20]
    Shin N Y, Kang D, Kim D, et al. Data-driven investigation on the boreal summer MJO predictability[J]. npj Climate and Atmospheric Science, 2024, 7(1): 248. doi: 10.1038/s41612-024-00799-8
    [21]
    Chen Lei, Zhong Xiaohui, Li Hao, et al. A machine learning model that outperforms conventional global subseasonal forecast models[J]. Nature Communications, 2024, 15(1): 6425. doi: 10.1038/s41467-024-50714-1
    [22]
    胡家晖, 陆波, 李昊, 等. 人工智能模型“风顺”对中国区域降水技巧检验[J]. 大气科学学报, 2025, 48(3): 366−376.

    Hu Jiahui, Lu Bo, Li Hao, et al. Skill test of the artificial intelligence model “Fengshun” for precipitation forecasting in China[J]. Transactions of Atmospheric Sciences, 2025, 48(3): 366−376.
    [23]
    张浩睿, 周磊. 热带季节内振荡在印尼海区域东传路径的分布及其机制[J]. 海洋学报, 2023, 45(10): 13−30.

    Zhang Haorui, Zhou Lei. The distribution of eastward propagating pathways of the Tropical Intraseasonal Oscillation and its mechanism in the Maritime Continent[J]. Haiyang Xuebao, 2023, 45(10): 13−30.
    [24]
    Dai Kuai, Li Xutao, Ma Chi, et al. Learning spatial-temporal consistency for satellite image sequence prediction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4104517.
    [25]
    Chen Guosen. Deciphering chaos in the Madden-Julian oscillation[J]. npj Climate and Atmospheric Science, 2024, 7(1): 311. doi: 10.1038/s41612-024-00870-4
    [26]
    Li Hongliang, Zhang Nong, Xu Zhewen, et al. DK-STN: a domain knowledge embedded spatio-temporal network model for MJO forecast[J/OL]. Expert Systems with Applications, Forthcoming, 2023[2023−09−18][2025−07−17]. https://dx.doi.org/10.2139/ssrn.4574792.
    [27]
    Liu Yumin, Duffy K, Dy J G, et al. Explainable deep learning for insights in El Niño and river flows[J]. Nature Communications, 2023, 14(1): 339. doi: 10.1038/s41467-023-35968-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views (149) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return