Citation: | Zhong Guorong,Li Xuegang,Song Jinming, et al. Machine Learning-Based Bias Correction Method for Ocean Buoy Sensor Observations[J]. Haiyang Xuebao,2025, 47(x):1–9 doi: 10.12284/hyxb2025000 |
[1] |
王军成. 国内外海洋资料浮标技术现状与发展[J]. 海洋技术, 1998, 17(1): 9−15.
Wang Juncheng. On the current situation and trend about ocean data buoy at home and abroad[J]. Ocean Technology, 1998, 17(1): 9−15.
|
[2] |
Roemmich D, Johnson G C, Riser S, et al. The Argo program: observing the global ocean with profiling floats[J]. Oceanography, 2009, 22(2): 34−43. doi: 10.5670/oceanog.2009.36
|
[3] |
王军成, 厉运周. 我国海洋资料浮标技术的发展与应用[J]. 山东科学, 2019, 32(5): 1−20. doi: 10.3976/j.issn.1002-4026.2019.05.001
Wang Juncheng, Li Yunzhou. Development and application of ocean data buoy technology in China[J]. Shandong Science, 2019, 32(5): 1−20. doi: 10.3976/j.issn.1002-4026.2019.05.001
|
[4] |
Oka E, Ando K. Stability of temperature and conductivity sensors of Argo profiling floats[J]. Journal of Oceanography, 2004, 60(2): 253−258. doi: 10.1023/B:JOCE.0000038331.10108.79
|
[5] |
Hall C, Jensen R E. USACE coastal and hydraulics laboratory quality controlled, consistent measurement archive[J]. Scientific Data, 2022, 9(1): 248. doi: 10.1038/s41597-022-01344-z
|
[6] |
Stoer A C, Takeshita Y, Maurer T L, et al. A census of quality-controlled Biogeochemical-Argo float measurements[J]. Frontiers in Marine Science, 2023, 10: 1233289. doi: 10.3389/fmars.2023.1233289
|
[7] |
Gaillard F, Autret E, Thierry V, et al. Quality control of large Argo datasets[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(2): 337−351. doi: 10.1175/2008JTECHO552.1
|
[8] |
Bliss A C, Hutchings J K, Watkins D M. Sea ice drift tracks from autonomous buoys in the MOSAiC distributed network[J]. Scientific Data, 2023, 10(1): 403. doi: 10.1038/s41597-023-02311-y
|
[9] |
Jiang Sha, Chen Yonghua, Liu Qingkui. Advancements in buoy wave data processing through the application of the Sage–Husa adaptive Kalman filtering algorithm[J]. Sensors, 2023, 23(16): 7298. doi: 10.3390/s23167298
|
[10] |
Wong A P S, Johnson G C, Owens W B. Delayed-mode calibration of autonomous CTD profiling float salinity data by θ–S climatology[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(2): 308−318. doi: 10.1175/1520-0426(2003)020<0308:DMCOAC>2.0.CO;2
|
[11] |
Owens W B, Wong A P S. An improved calibration method for the drift of the conductivity sensor on autonomous CTD profiling floats by θ–S climatology[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2009, 56(3): 450−457. doi: 10.1016/j.dsr.2008.09.008
|
[12] |
雷发美, 万艳, 商少平, 等. 海洋浮标表层环境要素质控流程和方法的研究[J]. 海洋技术学报, 2022, 41(4): 10−25.
Lei Famei, Wan Yan, Shang Shaoping, et al. Research on quality control process and method for surface environmental elements of marine buoy[J]. Journal of Ocean Technology, 2022, 41(4): 10−25.
|
[13] |
Hansen D V, Poulain P M. Quality control and interpolations of WOCE-TOGA drifter data[J]. Journal of Atmospheric and Oceanic Technology, 1996, 13(4): 900−909. doi: 10.1175/1520-0426(1996)013<0900:QCAIOW>2.0.CO;2
|
[14] |
Bushnell M. Quality assurance/quality control of real-time oceanographic data[C]//OCEANS 2015 - MTS/IEEE Washington. Washington: IEEE, 2015: 1−4.
|
[15] |
张斌, 冯立强, 王彦俊, 等. 长江口06号大型综合观测浮标2014~2015年观测数据集[J]. 中国科学数据(中英文网络版), 2017, 2(1): 95−102.
Zhang Bin, Feng Liqiang, Wang Yanjun, et al. A dataset of No. 6 large-scale integrated observation buoy on the Yangtze estuary(2014-2015)[J]. China Scientific Data, 2017, 2(1): 95−102.
|
[16] |
卢勇夺, 王朝阳, 王豹, 等. 我国海洋锚系浮标数据异常值检测方法研究——以QF110和QF306为例[J]. 海洋预报, 2019, 36(6): 37−43.
Lu Yongduo, Wang Zhaoyang, Wang Bao, et al. Research on outlier detection method for marine anchor buoys in China, using QF110 and QF306 as an example[J]. Marine Forecasts, 2019, 36(6): 37−43.
|
[17] |
Maurer T L, Plant J N, Johnson K S. Delayed-mode quality control of oxygen, nitrate, and pH data on SOCCOM biogeochemical profiling floats[J]. Frontiers in Marine Science, 2021, 8: 683207. doi: 10.3389/fmars.2021.683207
|
[18] |
Li Shuo, Wang Bin, Deng Zeng’an, et al. Data quality control method of a new drifting observation technology named drifting air-sea interface buoy[J]. Journal of Ocean University of China, 2024, 23(1): 11−22. doi: 10.1007/s11802-024-5426-2
|
[19] |
Takeshita Y, Martz T R, Johnson K S, et al. A climatology-based quality control procedure for profiling float oxygen data[J]. Journal of Geophysical Research: Oceans, 2013, 118(10): 5640−5650. doi: 10.1002/jgrc.20399
|
[20] |
Udaya Bhaskar T V S, Venkat Shesu R, Boyer T P, et al. Quality control of oceanographic in situ data from Argo floats using climatological convex hulls[J]. MethodsX, 2017, 4: 469−479. doi: 10.1016/j.mex.2017.11.007
|
[21] |
谭哲韬, 张斌, 吴晓芬, 等. 海洋观测数据质量控制技术研究现状及展望[J]. 中国科学: 地球科学, 2022, 52(3): 418−437.
Tan Zhetao, Zhang Bin, Wu Xiaofen, et al. Research status and prospects of quality control technology for ocean observation data[J]. Scientia Sinica (Terrae), 2022, 52(3): 418−437. (查阅网上资料, 未找到本条文献英文翻译信息, 请确认)
|
[22] |
Organelli E, Claustre H, Bricaud A, et al. A novel near-real-time quality-control procedure for radiometric profiles measured by bio-Argo floats: protocols and performances[J]. Journal of Atmospheric and Oceanic Technology, 2016, 33(5): 937−951. doi: 10.1175/JTECH-D-15-0193.1
|
[23] |
Petrenko B, Ignatov A, Pryamitsyn V, et al. Towards improved quality control of in situ sea surface temperatures from drifting and moored buoys in the NOAA iQuam system[J]. Applied Sciences, 2023, 13(18): 10205. doi: 10.3390/app131810205
|
[24] |
Wimart-Rousseau C, Steinhoff T, Klein B, et al. Technical note: Enhancement of float-pH data quality control methods: a study case in the Subpolar Northwest Atlantic region[J]. Biogeosciences Discussions, 2023, 2023: 1−26. (查阅网上资料, 未找到卷期页码信息, 请确认)
|
[25] |
Song Miaomiao, Gao Saiyu, Liu Shixuan, et al. Intelligent quality control method for marine buoy data based on transformer encoder and BiLSTM[J]. Frontiers in Marine Science, 2025, 12: 1528587. doi: 10.3389/fmars.2025.1528587
|