| Citation: | Wang Yi,Yu Qiuyu,Zeng Sainan, et al. Molecular basis of FGF signaling in heat-induced polyp bailout in Pocillopora damicornis[J]. Haiyang Xuebao,2025, 48(x):1–14 doi: 10.12284/hyxb202500-1 |
| [1] |
Frölicher T L, Fischer E M, Gruber N. Marine heatwaves under global warming[J]. Nature, 2018, 560(7718): 360−364. doi: 10.1038/s41586-018-0383-9
|
| [2] |
Sun Fulin, Yang Hongqiang, Zhang Xiyang, et al. Metabolic and metatranscriptional characteristics of corals bleaching induced by the most severe marine heatwaves in the South China Sea[J]. Science of the Total Environment, 2023, 858: 160019. doi: 10.1016/j.scitotenv.2022.160019
|
| [3] |
Smith M R, Myers S S. Impact of anthropogenic CO2 emissions on global human nutrition[J]. Nature Climate Change, 2018, 8(9): 834−839. doi: 10.1038/s41558-018-0253-3
|
| [4] |
Hawthorn A, Berzins I K, Dennis M M, et al. An introduction to lesions and histology of scleractinian corals[J]. Veterinary Pathology, 2023, 60(5): 529−546. doi: 10.1177/03009858231189289
|
| [5] |
Brown B E, Le Tissier M D A, Bythell J C. Mechanisms of bleaching deduced from histological studies of reef corals sampled during a natural bleaching event[J]. Marine Biology, 1995, 122(4): 655−663. doi: 10.1007/BF00350687
|
| [6] |
Hall V R, Hughes T P. Reproductive strategies of modular organisms: comparative studies of reef- building corals[J]. Ecology, 1996, 77(3): 950−963. doi: 10.2307/2265514
|
| [7] |
Schweinsberg M, Gösser F, Tollrian R. The history, biological relevance, and potential applications for polyp bailout in corals[J]. Ecology and Evolution, 2021, 11(13): 8424−8440. doi: 10.1002/ece3.7740
|
| [8] |
Thummasan M, Casareto B E, Ramphul C, et al. Physiological responses (Hsps 60 and 32, caspase 3, H2O2 scavenging, and photosynthetic activity) of the coral Pocillopora damicornis under thermal and high nitrate stresses[J]. Marine Pollution Bulletin, 2021, 171: 112737. doi: 10.1016/j.marpolbul.2021.112737
|
| [9] |
Sammarco P W. Polyp bail-out: an escape response to environmental stress and a new means of reproduction in corals[J]. Marine Ecology Progress Series, 1982, 10(1): 57−65.
|
| [10] |
Serrano E, Coma R, Inostroza K, et al. Polyp bail-out by the coral Astroides calycularis (Scleractinia, Dendrophylliidae)[J]. Marine Biodiversity, 2018, 48(3): 1661−1665. doi: 10.1007/s12526-017-0647-x
|
| [11] |
Higuchi T, Yuyama I, Nakamura T. The combined effects of nitrate with high temperature and high light intensity on coral bleaching and antioxidant enzyme activities[J]. Regional Studies in Marine Science, 2015, 2: 27−31. doi: 10.1016/j.rsma.2015.08.012
|
| [12] |
Wecker P, Lecellier G, Guibert I, et al. Exposure to the environmentally-persistent insecticide chlordecone induces detoxification genes and causes polyp bail-out in the coral P. damicornis[J]. Chemosphere, 2018, 195: 190−200. doi: 10.1016/j.chemosphere.2017.12.048
|
| [13] |
Hoogenboom M, Beraud E, Ferrier-Pagès C. Relationship between symbiont density and photosynthetic carbon acquisition in the temperate coral Cladocora caespitosa[J]. Coral Reefs, 2010, 29(1): 21−29. doi: 10.1007/s00338-009-0558-9
|
| [14] |
Hawkins T D, Krueger T, Becker S, et al. Differential nitric oxide synthesis and host apoptotic events correlate with bleaching susceptibility in reef corals[J]. Coral Reefs, 2014, 33(1): 141−153. doi: 10.1007/s00338-013-1103-4
|
| [15] |
Kvitt H, Kramarsky-Winter E, Maor-Landaw K, et al. Breakdown of coral colonial form under reduced pH conditions is initiated in polyps and mediated through apoptosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(7): 2082−2086.
|
| [16] |
Chuang P S, Mitarai S. Signaling pathways in the coral polyp bail-out response[J]. Coral Reefs, 2020, 39(6): 1535−1548. doi: 10.1007/s00338-020-01983-x
|
| [17] |
Gösser F, Raulf A, Mosig A, et al. Signaling pathways of heat- and hypersalinity-induced polyp bailout in Pocillopora acuta[J]. Coral Reefs, 2021, 40(6): 1713−1728. doi: 10.1007/s00338-021-02191-x
|
| [18] |
Ornitz D M, Itoh N. The fibroblast growth factor signaling pathway[J]. WIREs Mechanisms of Disease, 2015, 4(3): 215−266.
|
| [19] |
Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer[J]. Nature Reviews Cancer, 2010, 10(2): 116−129. doi: 10.1038/nrc2780
|
| [20] |
Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy[J]. Nature Reviews Drug Discovery, 2009, 8(3): 235−253. doi: 10.1038/nrd2792
|
| [21] |
Mason I. Initiation to end point: the multiple roles of fibroblast growth factors in neural development[J]. Nature Reviews Neuroscience, 2007, 8(8): 583−596. doi: 10.1038/nrn2189
|
| [22] |
李倩. 山羊FGF1、FGF10和FGF21基因表达特性及其对山羊肌内前体脂肪细胞分化的影响[D]. 成都: 西南民族大学, 2017.
Li Qian. The expression characteristics of FGF1, FGF10 and FGF21 and their effects on the differentiation of goat intramuscular preadipocyte[D]. Chengdu: Southwest Minzu University, 2017.
|
| [23] |
Huang Gongkai, Huang Chaocheng, Kang C H, et al. Genetic interference of FGFR3 impedes invasion of upper tract urothelial carcinoma cells by alleviating RAS/MAPK signal activity[J]. International Journal of Molecular Sciences, 2023, 24(2): 1776. doi: 10.3390/ijms24021776
|
| [24] |
Sarrazin S, Lamanna W C, Esko J D. Heparan sulfate proteoglycans[J]. Cold Spring Harbor Perspectives in Biology, 2011, 3(7): a004952.
|
| [25] |
Matsuo I, Kimura-Yoshida C. Extracellular distribution of diffusible growth factors controlled by heparan sulfate proteoglycans during mammalian embryogenesis[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369(1657): 20130545. doi: 10.1098/rstb.2013.0545
|
| [26] |
Yasui H, Andoh A, Bamba S, et al. Role of fibroblast growth factor-2 in the expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human intestinal myofibroblasts[J]. Digestion, 2004, 69(1): 34−44. doi: 10.1159/000076545
|
| [27] |
Shimazu A, Morishita M. Basic fibroblast growth factor induces the expression of matrix metalloproteinase-3 in human periodontal ligament cells through the MEK2 mitogen-activated protein kinase pathway[J]. Journal of Periodontal Research, 2003, 38(2): 122−129. doi: 10.1034/j.1600-0765.2003.01645.x
|
| [28] |
Liu Jianfeng, Crépin M, Liu Jianmiao, et al. FGF-2 and TPA induce matrix metalloproteinase-9 secretion in MCF-7 cells through PKC activation of the Ras/ERK pathway[J]. Biochemical and Biophysical Research Communications, 2002, 293(4): 1174−1182. doi: 10.1016/S0006-291X(02)00350-9
|
| [29] |
Laudien J, Heran T, Häussermann V, et al. Polyp dropout in a solitary cold-water coral[J]. Coral Reefs, 2021, 40(5): 1657−1665. doi: 10.1007/s00338-021-02148-0
|
| [30] |
Lirman D. Fragmentation in the branching coral Acropora palmata (Lamarck): growth, survivorship, and reproduction of colonies and fragments[J]. Journal of Experimental Marine Biology and Ecology, 2000, 251(1): 41−57. doi: 10.1016/S0022-0981(00)00205-7
|
| [31] |
Yu Qiuyu, He Chunlong, Wang Yi, et al. The differential physiological responses to heat stress in the scleractinian coral Pocillopora damicornis are affected by its energy reserve[J]. Marine Environmental Research, 2025, 204: 106966. doi: 10.1016/j.marenvres.2025.106966
|
| [32] |
张诗泽, 黄晖, 张浴阳, 等. 鹿回头多孔鹿角珊瑚与丛生盔形珊瑚性腺组织学研究[J]. 生态科学, 2016, 35(1): 41−46. doi: 10.14108/j.cnki.1008-8873.2016.01.006
Zhang Shize, Huang Hui, Zhang Yuyang, et al. Histological analyses of the gonad for Acropora millepora and Galaxea fascicularis from Sanya Luhuitou of Hainan Island[J]. Ecological Science, 2016, 35(1): 41−46. doi: 10.14108/j.cnki.1008-8873.2016.01.006
|
| [33] |
许朝花, 李惠莲, 岑万, 等. 佛罗里达文昌鱼的染色体标本制备与观察[J]. 福建师范大学学报(自然科学版), 2020, 36(4): 64−69,92.
Xu Chaohua, Li Huilian, Cen Wan, et al. Preparation and observation on chromosome of Branchiostoma floridae[J]. Journal of Fujian Normal University (Natural Science Edition), 2020, 36(4): 64−69,92.
|
| [34] |
周胜杰, 杨其彬, 胡静, 等. 蠵龟异速生长研究[J]. 中国兽医杂志, 2020, 56(1): 97−101.
Zhou Shengjie, Yang Qibin, Hu Jing, et al. Allometric growth of Caretta caretta[J]. Chinese Journal of Veterinary Medicine, 2020, 56(1): 97−101.
|
| [35] |
刘雁. 深圳大鹏半岛海域美丽固边海葵(Exaiptasia diaphana)的生物量与生源要素监测与评估[D]. 上海: 上海海洋大学, 2023.
Liu Yan. Monitoring and evaluation of biomass and biogenic elements of Exaiptasia diaphana in the Dapeng Peninsula sea area of Shenzhen[D]. Shanghai: Shanghai Ocean University, 2023.
|
| [36] |
王尔栋, 李洪武, 陈国华, 等. 叶状蔷薇珊瑚(Montipora foliosa)断枝增殖及环境理化因子调控的研究[J]. 海南师范大学学报(自然科学版), 2012, 25(4): 431−434.
Wang Erdong, Li Hongwu, Chen Guohua, et al. Resreach on isolated artificial feeding of Montipora Foliosa and environmental regulation of physical and chemical factors[J]. Journal of Hainan Normal University (Natural Science), 2012, 25(4): 431−434.
|
| [37] |
彭慧湃. 基于线粒体基因组和超保守元件团块角孔珊瑚系统演化研究[D]. 湛江: 广东海洋大学, 2020.
Peng Huipai. Phylogeny of Goniopora lobata based on mitochondrial genome and ultra-conserved elements[D]. Zhanjiang: Guangdong Ocean University, 2020.
|
| [38] |
杨武夷, 孙馨喆, 张宇, 等. 一种宽吻海豚通讯信号自动分类的方法[J]. 声学学报, 2016, 41(2): 181−188. doi: 10.15949/j.cnki.0371-0025.2016.02.005
Yang Wuyi, Sun Xinzhe, Zhang Yu, et al. An automatic classification method for whistles of bottlenose dolphin (Tursiops truncates)[J]. Acta Acustica, 2016, 41(2): 181−188. doi: 10.15949/j.cnki.0371-0025.2016.02.005
|
| [39] |
刘臻, 施华宏, 黄宏, 等. 3种抗生素对热带爪蟾胚胎发育的毒性影响[J]. 安全与环境学报, 2011, 11(5): 1−6.
Liu Zhen, Shi Huahong, Huang Hong, et al. On the effects of chloramphenicol erythromycin and tetracycline on the growing Xenopus tropicalis embryos[J]. Journal of Safety and Environment, 2011, 11(5): 1−6.
|
| [40] |
Pertea M, Kim D, Pertea G M, et al. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown[J]. Nature Protocols, 2016, 11(9): 1650−1667. doi: 10.1038/nprot.2016.095
|
| [41] |
Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12): 550. doi: 10.1186/s13059-014-0550-8
|
| [42] |
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis[J]. BMC Bioinformatics, 2008, 9(1): 559. doi: 10.1186/1471-2105-9-559
|
| [43] |
Lesk A M, Chothia C. How different amino acid sequences determine similar protein structures: the structure and evolutionary dynamics of the globins[J]. Journal of Molecular Biology, 1980, 136(3): 225−270. doi: 10.1016/0022-2836(80)90373-3
|
| [44] |
Richardson J S. The anatomy and taxonomy of protein structure[J]. Advances in Protein Chemistry, 1981, 34: 167−339.
|
| [45] |
Chothia C, Lesk A M. The relation between the divergence of sequence and structure in proteins[J]. The EMBO Journal, 1986, 5(4): 823−826. doi: 10.1002/j.1460-2075.1986.tb04288.x
|
| [46] |
Mohammadi M, Olsen S K, GOETZ R. A protein canyon in the FGF–FGF receptor dimer selects from an à la carte menu of heparan sulfate motifs[J]. Current Opinion in Structural Biology, 2005, 15(5): 506−516. doi: 10.1016/j.sbi.2005.09.002
|
| [47] |
Kenkel C D, Matz M V. Gene expression plasticity as a mechanism of coral adaptation to a variable environment[J]. Nature Ecology & Evolution, 2016, 1(1): 14.
|
| [48] |
Technau U, Steele R E. Evolutionary crossroads in developmental biology: cnidaria[J]. Development, 2011, 138(8): 1447−1458. doi: 10.1242/dev.048959
|
| [49] |
Brewer J R, Mazot P, Soriano P. Genetic insights into the mechanisms of Fgf signaling[J]. Genes & Development, 2016, 30(7): 751−771.
|
| [50] |
Xie Yangli, Su Nan, Yang Jing, et al. FGF/FGFR signaling in health and disease[J]. Signal Transduction and Targeted Therapy, 2020, 5(1): 181. doi: 10.1038/s41392-020-00222-7
|
| [51] |
Harding M J, Nechiporuk A V. Fgfr-Ras-MAPK signaling is required for apical constriction via apical positioning of Rho-associated kinase during mechanosensory organ formation[J]. Development, 2012, 139(17): 3130−3135. doi: 10.1242/dev.082271
|
| [52] |
Wang Zhaoni, Li Wanshan, Chen Shixing, et al. Role of ADAM and ADAMTS proteases in pathological tissue remodeling[J]. Cell Death Discovery, 2023, 9(1): 447. doi: 10.1038/s41420-023-01744-z
|
| [53] |
Theocharis A D, Skandalis S S, Gialeli C, et al. Extracellular matrix structure[J]. Advanced Drug Delivery Reviews, 2016, 97: 4−27. doi: 10.1016/j.addr.2015.11.001
|
| [54] |
Vizovišek M, Fonović M, Turk B. Cysteine cathepsins in extracellular matrix remodeling: Extracellular matrix degradation and beyond[J]. Matrix Biology, 2019, 75-76: 141-159.
|
| [55] |
Vidak E, Javoršek U, Vizovišek M, et al. Cysteine cathepsins and their extracellular roles: shaping the microenvironment[J]. Cells, 2019, 8(3): 264. doi: 10.3390/cells8030264
|
| [56] |
Wang Jian, Chen Leilei, Li Yan, et al. Overexpression of cathepsin Z contributes to tumor metastasis by inducing epithelial-mesenchymal transition in hepatocellular carcinoma[J]. PLoS One, 2011, 6(9): e24967. doi: 10.1371/journal.pone.0024967
|
| [57] |
Fitzgerald J, Bateman J F. A new FACIT of the collagen family: COL21A1[J]. FEBS Letters, 2001, 505(2): 275−280. doi: 10.1016/S0014-5793(01)02754-5
|
| [58] |
Song M, Schnettler E, Venkatachalam A, et al. Increased expression of collagen prolyl hydroxylases in ovarian cancer is associated with cancer growth and metastasis[J]. American Journal of Cancer Research, 2023, 13(12): 6051−6062.
|
| [59] |
Keld R, Guo Baoqiang, Downey P, et al. The ERK MAP kinase-PEA3/ETV4-MMP-1 axis is operative in oesophageal adenocarcinoma[J]. Molecular Cancer, 2010, 9(1): 313. doi: 10.1186/1476-4598-9-313
|
| [60] |
Stamenkovic I. Extracellular matrix remodelling: the role of matrix metalloproteinases[J]. The Journal of Pathology, 2003, 200(4): 448−464. doi: 10.1002/path.1400
|
| [61] |
Hynes R O. The extracellular matrix: not just pretty fibrils[J]. Science, 2009, 326(5957): 1216−1219. doi: 10.1126/science.1176009
|
| [62] |
Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease[J]. Nature Reviews Molecular Cell Biology, 2014, 15(12): 786−801. doi: 10.1038/nrm3904
|